sabretoothedhugs's picture
v2
9b19c29
from collections.abc import Callable
from typing import Any
import gymnasium as gym
import numpy as np
from tianshou.env.worker import EnvWorker
class DummyEnvWorker(EnvWorker):
"""Dummy worker used in sequential vector environments."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
self.env = env_fn()
super().__init__(env_fn)
def get_env_attr(self, key: str) -> Any:
return getattr(self.env, key)
def set_env_attr(self, key: str, value: Any) -> None:
setattr(self.env.unwrapped, key, value)
def reset(self, **kwargs: Any) -> tuple[np.ndarray, dict]:
if "seed" in kwargs:
super().seed(kwargs["seed"])
return self.env.reset(**kwargs)
@staticmethod
def wait( # type: ignore
workers: list["DummyEnvWorker"],
wait_num: int,
timeout: float | None = None,
) -> list["DummyEnvWorker"]:
# Sequential EnvWorker objects are always ready
return workers
def send(self, action: np.ndarray | None, **kwargs: Any) -> None:
if action is None:
self.result = self.env.reset(**kwargs)
else:
self.result = self.env.step(action) # type: ignore
def seed(self, seed: int | None = None) -> list[int] | None:
super().seed(seed)
try:
return self.env.seed(seed) # type: ignore
except (AttributeError, NotImplementedError):
self.env.reset(seed=seed)
return [seed] # type: ignore
def render(self, **kwargs: Any) -> Any:
return self.env.render(**kwargs)
def close_env(self) -> None:
self.env.close()