|
from numbers import Number |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
class MovAvg: |
|
"""Class for moving average. |
|
|
|
It will automatically exclude the infinity and NaN. Usage: |
|
:: |
|
|
|
>>> stat = MovAvg(size=66) |
|
>>> stat.add(torch.tensor(5)) |
|
5.0 |
|
>>> stat.add(float('inf')) # which will not add to stat |
|
5.0 |
|
>>> stat.add([6, 7, 8]) |
|
6.5 |
|
>>> stat.get() |
|
6.5 |
|
>>> print(f'{stat.mean():.2f}±{stat.std():.2f}') |
|
6.50±1.12 |
|
""" |
|
|
|
def __init__(self, size: int = 100) -> None: |
|
super().__init__() |
|
self.size = size |
|
self.cache: list[np.number] = [] |
|
self.banned = [np.inf, np.nan, -np.inf] |
|
|
|
def add( |
|
self, |
|
data_array: Number | float | np.number | list | np.ndarray | torch.Tensor, |
|
) -> float: |
|
"""Add a scalar into :class:`MovAvg`. |
|
|
|
You can add ``torch.Tensor`` with only one element, a python scalar, or |
|
a list of python scalar. |
|
""" |
|
if isinstance(data_array, torch.Tensor): |
|
data_array = data_array.flatten().cpu().numpy() |
|
if np.isscalar(data_array): |
|
data_array = [data_array] |
|
for number in data_array: |
|
if number not in self.banned: |
|
self.cache.append(number) |
|
if self.size > 0 and len(self.cache) > self.size: |
|
self.cache = self.cache[-self.size :] |
|
return self.get() |
|
|
|
def get(self) -> float: |
|
"""Get the average.""" |
|
if len(self.cache) == 0: |
|
return 0.0 |
|
return float(np.mean(self.cache)) |
|
|
|
def mean(self) -> float: |
|
"""Get the average. Same as :meth:`get`.""" |
|
return self.get() |
|
|
|
def std(self) -> float: |
|
"""Get the standard deviation.""" |
|
if len(self.cache) == 0: |
|
return 0.0 |
|
return float(np.std(self.cache)) |
|
|
|
|
|
class RunningMeanStd: |
|
"""Calculates the running mean and std of a data stream. |
|
|
|
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm |
|
|
|
:param mean: the initial mean estimation for data array. Default to 0. |
|
:param std: the initial standard error estimation for data array. Default to 1. |
|
:param clip_max: the maximum absolute value for data array. Default to |
|
10.0. |
|
:param epsilon: To avoid division by zero. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
mean: float | np.ndarray = 0.0, |
|
std: float | np.ndarray = 1.0, |
|
clip_max: float | None = 10.0, |
|
epsilon: float = np.finfo(np.float32).eps.item(), |
|
) -> None: |
|
self.mean, self.var = mean, std |
|
self.clip_max = clip_max |
|
self.count = 0 |
|
self.eps = epsilon |
|
|
|
def norm(self, data_array: float | np.ndarray) -> float | np.ndarray: |
|
data_array = (data_array - self.mean) / np.sqrt(self.var + self.eps) |
|
if self.clip_max: |
|
data_array = np.clip(data_array, -self.clip_max, self.clip_max) |
|
return data_array |
|
|
|
def update(self, data_array: np.ndarray) -> None: |
|
"""Add a batch of item into RMS with the same shape, modify mean/var/count.""" |
|
batch_mean, batch_var = np.mean(data_array, axis=0), np.var(data_array, axis=0) |
|
batch_count = len(data_array) |
|
|
|
delta = batch_mean - self.mean |
|
total_count = self.count + batch_count |
|
|
|
new_mean = self.mean + delta * batch_count / total_count |
|
m_a = self.var * self.count |
|
m_b = batch_var * batch_count |
|
m_2 = m_a + m_b + delta**2 * self.count * batch_count / total_count |
|
new_var = m_2 / total_count |
|
|
|
self.mean, self.var = new_mean, new_var |
|
self.count = total_count |
|
|