from collections.abc import Callable, Sequence from typing import Any import numpy as np import torch from torch import nn from examples.atari.tianshou.highlevel.env import Environments from examples.atari.tianshou.highlevel.module.actor import ActorFactory from examples.atari.tianshou.highlevel.module.core import ( TDevice, ) from examples.atari.tianshou.highlevel.module.intermediate import ( IntermediateModule, IntermediateModuleFactory, ) from examples.atari.tianshou.utils.net.common import NetBase from examples.atari.tianshou.utils.net.discrete import Actor, NoisyLinear def layer_init(layer: nn.Module, std: float = np.sqrt(2), bias_const: float = 0.0) -> nn.Module: torch.nn.init.orthogonal_(layer.weight, std) torch.nn.init.constant_(layer.bias, bias_const) return layer class ScaledObsInputModule(torch.nn.Module): def __init__(self, module: NetBase, denom: float = 255.0) -> None: super().__init__() self.module = module self.denom = denom # This is required such that the value can be retrieved by downstream modules (see usages of get_output_dim) self.output_dim = module.output_dim def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, ) -> tuple[torch.Tensor, Any]: if info is None: info = {} return self.module.forward(obs / self.denom, state, info) def scale_obs(module: NetBase, denom: float = 255.0) -> ScaledObsInputModule: return ScaledObsInputModule(module, denom=denom) class DQN(NetBase[Any]): """Reference: Human-level control through deep reinforcement learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int] | int, device: str | int | torch.device = "cpu", features_only: bool = False, output_dim_added_layer: int | None = None, layer_init: Callable[[nn.Module], nn.Module] = lambda x: x, ) -> None: # TODO: Add docstring if not features_only and output_dim_added_layer is not None: raise ValueError( "Should not provide explicit output dimension using `output_dim_added_layer` when `features_only` is true.", ) super().__init__() self.device = device self.net = nn.Sequential( layer_init(nn.Conv2d(c, 32, kernel_size=8, stride=4)), nn.ReLU(inplace=True), layer_init(nn.Conv2d(32, 64, kernel_size=4, stride=2)), nn.ReLU(inplace=True), layer_init(nn.Conv2d(64, 64, kernel_size=3, stride=1)), nn.ReLU(inplace=True), nn.Flatten(), ) with torch.no_grad(): base_cnn_output_dim = int(np.prod(self.net(torch.zeros(1, c, h, w)).shape[1:])) if not features_only: action_dim = int(np.prod(action_shape)) self.net = nn.Sequential( self.net, layer_init(nn.Linear(base_cnn_output_dim, 512)), nn.ReLU(inplace=True), layer_init(nn.Linear(512, action_dim)), ) self.output_dim = action_dim elif output_dim_added_layer is not None: self.net = nn.Sequential( self.net, layer_init(nn.Linear(base_cnn_output_dim, output_dim_added_layer)), nn.ReLU(inplace=True), ) self.output_dim = output_dim_added_layer else: self.output_dim = base_cnn_output_dim def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, **kwargs: Any, ) -> tuple[torch.Tensor, Any]: r"""Mapping: s -> Q(s, \*).""" obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32) return self.net(obs), state class C51(DQN): """Reference: A distributional perspective on reinforcement learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_atoms: int = 51, device: str | int | torch.device = "cpu", ) -> None: self.action_num = int(np.prod(action_shape)) super().__init__(c, h, w, [self.action_num * num_atoms], device) self.num_atoms = num_atoms def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, **kwargs: Any, ) -> tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" obs, state = super().forward(obs) obs = obs.view(-1, self.num_atoms).softmax(dim=-1) obs = obs.view(-1, self.action_num, self.num_atoms) return obs, state class Rainbow(DQN): """Reference: Rainbow: Combining Improvements in Deep Reinforcement Learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_atoms: int = 51, noisy_std: float = 0.5, device: str | int | torch.device = "cpu", is_dueling: bool = True, is_noisy: bool = True, ) -> None: super().__init__(c, h, w, action_shape, device, features_only=True) self.action_num = int(np.prod(action_shape)) self.num_atoms = num_atoms def linear(x: int, y: int) -> NoisyLinear | nn.Linear: if is_noisy: return NoisyLinear(x, y, noisy_std) return nn.Linear(x, y) self.Q = nn.Sequential( linear(self.output_dim, 512), nn.ReLU(inplace=True), linear(512, self.action_num * self.num_atoms), ) self._is_dueling = is_dueling if self._is_dueling: self.V = nn.Sequential( linear(self.output_dim, 512), nn.ReLU(inplace=True), linear(512, self.num_atoms), ) self.output_dim = self.action_num * self.num_atoms def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, **kwargs: Any, ) -> tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" obs, state = super().forward(obs) q = self.Q(obs) q = q.view(-1, self.action_num, self.num_atoms) if self._is_dueling: v = self.V(obs) v = v.view(-1, 1, self.num_atoms) logits = q - q.mean(dim=1, keepdim=True) + v else: logits = q probs = logits.softmax(dim=2) return probs, state class QRDQN(DQN): """Reference: Distributional Reinforcement Learning with Quantile Regression. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, *, c: int, h: int, w: int, action_shape: Sequence[int] | int, num_quantiles: int = 200, device: str | int | torch.device = "cpu", ) -> None: self.action_num = int(np.prod(action_shape)) super().__init__(c, h, w, [self.action_num * num_quantiles], device) self.num_quantiles = num_quantiles def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, **kwargs: Any, ) -> tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" obs, state = super().forward(obs) obs = obs.view(-1, self.action_num, self.num_quantiles) return obs, state class ActorFactoryAtariDQN(ActorFactory): def __init__( self, scale_obs: bool = True, features_only: bool = False, output_dim_added_layer: int | None = None, ) -> None: self.output_dim_added_layer = output_dim_added_layer self.scale_obs = scale_obs self.features_only = features_only def create_module(self, envs: Environments, device: TDevice) -> Actor: c, h, w = envs.get_observation_shape() # type: ignore # only right shape is a sequence of length 3 action_shape = envs.get_action_shape() if isinstance(action_shape, np.int64): action_shape = int(action_shape) net: DQN | ScaledObsInputModule net = DQN( c=c, h=h, w=w, action_shape=action_shape, device=device, features_only=self.features_only, output_dim_added_layer=self.output_dim_added_layer, layer_init=layer_init, ) if self.scale_obs: net = scale_obs(net) return Actor(net, envs.get_action_shape(), device=device, softmax_output=False).to(device) class IntermediateModuleFactoryAtariDQN(IntermediateModuleFactory): def __init__(self, features_only: bool = False, net_only: bool = False) -> None: self.features_only = features_only self.net_only = net_only def create_intermediate_module(self, envs: Environments, device: TDevice) -> IntermediateModule: obs_shape = envs.get_observation_shape() if isinstance(obs_shape, int): obs_shape = [obs_shape] assert len(obs_shape) == 3 c, h, w = obs_shape action_shape = envs.get_action_shape() if isinstance(action_shape, np.int64): action_shape = int(action_shape) dqn = DQN( c=c, h=h, w=w, action_shape=action_shape, device=device, features_only=self.features_only, ).to(device) module = dqn.net if self.net_only else dqn return IntermediateModule(module, dqn.output_dim) class IntermediateModuleFactoryAtariDQNFeatures(IntermediateModuleFactoryAtariDQN): def __init__(self) -> None: super().__init__(features_only=True, net_only=True)