import contextlib from collections.abc import Callable from typing import Any import gymnasium as gym import numpy as np from tianshou.env.utils import ENV_TYPE, gym_new_venv_step_type from tianshou.env.worker import EnvWorker with contextlib.suppress(ImportError): import ray # mypy: disable-error-code="unused-ignore" class _SetAttrWrapper(gym.Wrapper): def set_env_attr(self, key: str, value: Any) -> None: setattr(self.env.unwrapped, key, value) def get_env_attr(self, key: str) -> Any: return getattr(self.env, key) class RayEnvWorker(EnvWorker): """Ray worker used in RayVectorEnv.""" def __init__( self, env_fn: Callable[[], ENV_TYPE], ) -> None: # TODO: is ENV_TYPE actually correct? self.env = ray.remote(_SetAttrWrapper).options(num_cpus=0).remote(env_fn()) # type: ignore super().__init__(env_fn) def get_env_attr(self, key: str) -> Any: return ray.get(self.env.get_env_attr.remote(key)) def set_env_attr(self, key: str, value: Any) -> None: ray.get(self.env.set_env_attr.remote(key, value)) def reset(self, **kwargs: Any) -> Any: if "seed" in kwargs: super().seed(kwargs["seed"]) return ray.get(self.env.reset.remote(**kwargs)) @staticmethod def wait( # type: ignore workers: list["RayEnvWorker"], wait_num: int, timeout: float | None = None, ) -> list["RayEnvWorker"]: results = [x.result for x in workers] ready_results, _ = ray.wait(results, num_returns=wait_num, timeout=timeout) return [workers[results.index(result)] for result in ready_results] def send(self, action: np.ndarray | None, **kwargs: Any) -> None: # self.result is actually a handle if action is None: self.result = self.env.reset.remote(**kwargs) else: self.result = self.env.step.remote(action) def recv(self) -> gym_new_venv_step_type: return ray.get(self.result) # type: ignore def seed(self, seed: int | None = None) -> list[int] | None: super().seed(seed) try: return ray.get(self.env.seed.remote(seed)) except (AttributeError, NotImplementedError): self.env.reset.remote(seed=seed) return None def render(self, **kwargs: Any) -> Any: return ray.get(self.env.render.remote(**kwargs)) def close_env(self) -> None: ray.get(self.env.close.remote())