# Borrow a lot from openai baselines: # https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py import logging import warnings from collections import deque from typing import Any, SupportsFloat import cv2 import gymnasium as gym import numpy as np from gymnasium import Env from examples.atari.tianshou.env import BaseVectorEnv from examples.atari.tianshou.highlevel.env import ( EnvFactoryRegistered, EnvMode, EnvPoolFactory, VectorEnvType, ) from examples.atari.tianshou.highlevel.trainer import EpochStopCallback, TrainingContext envpool_is_available = True try: import envpool except ImportError: envpool_is_available = False envpool = None log = logging.getLogger(__name__) def _parse_reset_result(reset_result: tuple) -> tuple[tuple, dict, bool]: contains_info = ( isinstance(reset_result, tuple) and len(reset_result) == 2 and isinstance(reset_result[1], dict) ) if contains_info: return reset_result[0], reset_result[1], contains_info return reset_result, {}, contains_info def get_space_dtype(obs_space: gym.spaces.Box) -> type[np.floating] | type[np.integer]: obs_space_dtype: type[np.integer] | type[np.floating] if np.issubdtype(obs_space.dtype, np.integer): obs_space_dtype = np.integer elif np.issubdtype(obs_space.dtype, np.floating): obs_space_dtype = np.floating else: raise TypeError( f"Unsupported observation space dtype: {obs_space.dtype}. " f"This might be a bug in tianshou or gymnasium, please report it!", ) return obs_space_dtype class NoopResetEnv(gym.Wrapper): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. :param gym.Env env: the environment to wrap. :param int noop_max: the maximum value of no-ops to run. """ def __init__(self, env: gym.Env, noop_max: int = 30) -> None: super().__init__(env) self.noop_max = noop_max self.noop_action = 0 assert hasattr(env.unwrapped, "get_action_meanings") assert env.unwrapped.get_action_meanings()[0] == "NOOP" def reset(self, **kwargs: Any) -> tuple[Any, dict[str, Any]]: _, info, return_info = _parse_reset_result(self.env.reset(**kwargs)) noops = self.unwrapped.np_random.integers(1, self.noop_max + 1) for _ in range(noops): step_result = self.env.step(self.noop_action) if len(step_result) == 4: obs, rew, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation) else: obs, rew, term, trunc, info = step_result done = term or trunc if done: obs, info, _ = _parse_reset_result(self.env.reset()) if return_info: return obs, info return obs, {} class MaxAndSkipEnv(gym.Wrapper): """Return only every `skip`-th frame (frameskipping) using most recent raw observations (for max pooling across time steps). :param gym.Env env: the environment to wrap. :param int skip: number of `skip`-th frame. """ def __init__(self, env: gym.Env, skip: int = 4) -> None: super().__init__(env) self._skip = skip def step(self, action: Any) -> tuple[Any, float, bool, bool, dict[str, Any]]: """Step the environment with the given action. Repeat action, sum reward, and max over last observations. """ obs_list = [] total_reward = 0.0 new_step_api = False for _ in range(self._skip): step_result = self.env.step(action) if len(step_result) == 4: obs, reward, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation) else: obs, reward, term, trunc, info = step_result done = term or trunc new_step_api = True obs_list.append(obs) total_reward += float(reward) if done: break max_frame = np.max(obs_list[-2:], axis=0) if new_step_api: return max_frame, total_reward, term, trunc, info return max_frame, total_reward, done, info.get("TimeLimit.truncated", False), info class EpisodicLifeEnv(gym.Wrapper): """Make end-of-life == end-of-episode, but only reset on true game over. It helps the value estimation. :param gym.Env env: the environment to wrap. """ def __init__(self, env: gym.Env) -> None: super().__init__(env) self.lives = 0 self.was_real_done = True self._return_info = False def step(self, action: Any) -> tuple[Any, float, bool, bool, dict[str, Any]]: step_result = self.env.step(action) if len(step_result) == 4: obs, reward, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation) new_step_api = False else: obs, reward, term, trunc, info = step_result done = term or trunc new_step_api = True reward = float(reward) self.was_real_done = done # check current lives, make loss of life terminal, then update lives to # handle bonus lives assert hasattr(self.env.unwrapped, "ale") lives = self.env.unwrapped.ale.lives() if 0 < lives < self.lives: # for Qbert sometimes we stay in lives == 0 condition for a few # frames, so its important to keep lives > 0, so that we only reset # once the environment is actually done. done = True term = True self.lives = lives if new_step_api: return obs, reward, term, trunc, info return obs, reward, done, info.get("TimeLimit.truncated", False), info def reset(self, **kwargs: Any) -> tuple[Any, dict[str, Any]]: """Calls the Gym environment reset, only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs, info, self._return_info = _parse_reset_result(self.env.reset(**kwargs)) else: # no-op step to advance from terminal/lost life state step_result = self.env.step(0) obs, info = step_result[0], step_result[-1] assert hasattr(self.env.unwrapped, "ale") self.lives = self.env.unwrapped.ale.lives() if self._return_info: return obs, info return obs, {} class FireResetEnv(gym.Wrapper): """Take action on reset for environments that are fixed until firing. Related discussion: https://github.com/openai/baselines/issues/240. :param gym.Env env: the environment to wrap. """ def __init__(self, env: gym.Env) -> None: super().__init__(env) assert hasattr(env.unwrapped, "get_action_meanings") assert env.unwrapped.get_action_meanings()[1] == "FIRE" assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs: Any) -> tuple[Any, dict]: _, _, return_info = _parse_reset_result(self.env.reset(**kwargs)) obs = self.env.step(1)[0] return obs, {} class WarpFrame(gym.ObservationWrapper): """Warp frames to 84x84 as done in the Nature paper and later work. :param gym.Env env: the environment to wrap. """ def __init__(self, env: gym.Env) -> None: super().__init__(env) self.size = 84 obs_space = env.observation_space assert isinstance(obs_space, gym.spaces.Box) obs_space_dtype = get_space_dtype(obs_space) self.observation_space = gym.spaces.Box( low=np.min(obs_space.low), high=np.max(obs_space.high), shape=(self.size, self.size), dtype=obs_space_dtype, ) def observation(self, frame: np.ndarray) -> np.ndarray: """Returns the current observation from a frame.""" frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) return cv2.resize(frame, (self.size, self.size), interpolation=cv2.INTER_AREA) class ScaledFloatFrame(gym.ObservationWrapper): """Normalize observations to 0~1. :param gym.Env env: the environment to wrap. """ def __init__(self, env: gym.Env) -> None: super().__init__(env) obs_space = env.observation_space assert isinstance(obs_space, gym.spaces.Box) low = np.min(obs_space.low) high = np.max(obs_space.high) self.bias = low self.scale = high - low self.observation_space = gym.spaces.Box( low=0.0, high=1.0, shape=obs_space.shape, dtype=np.float32, ) def observation(self, observation: np.ndarray) -> np.ndarray: return (observation - self.bias) / self.scale class ClipRewardEnv(gym.RewardWrapper): """clips the reward to {+1, 0, -1} by its sign. :param gym.Env env: the environment to wrap. """ def __init__(self, env: gym.Env) -> None: super().__init__(env) self.reward_range = (-1, 1) def reward(self, reward: SupportsFloat) -> int: """Bin reward to {+1, 0, -1} by its sign. Note: np.sign(0) == 0.""" return np.sign(float(reward)) class FrameStack(gym.Wrapper): """Stack n_frames last frames. :param gym.Env env: the environment to wrap. :param int n_frames: the number of frames to stack. """ def __init__(self, env: gym.Env, n_frames: int) -> None: super().__init__(env) self.n_frames: int = n_frames self.frames: deque[tuple[Any, ...]] = deque([], maxlen=n_frames) obs_space = env.observation_space obs_space_shape = env.observation_space.shape assert obs_space_shape is not None shape = (n_frames, *obs_space_shape) assert isinstance(obs_space, gym.spaces.Box) obs_space_dtype = get_space_dtype(obs_space) self.observation_space = gym.spaces.Box( low=np.min(obs_space.low), high=np.max(obs_space.high), shape=shape, dtype=obs_space_dtype, ) def reset(self, **kwargs: Any) -> tuple[np.ndarray, dict]: obs, info, return_info = _parse_reset_result(self.env.reset(**kwargs)) for _ in range(self.n_frames): self.frames.append(obs) return (self._get_ob(), info) if return_info else (self._get_ob(), {}) def step(self, action: Any) -> tuple[np.ndarray, float, bool, bool, dict[str, Any]]: step_result = self.env.step(action) done: bool if len(step_result) == 4: obs, reward, done, info = step_result # type: ignore[unreachable] # mypy doesn't know that Gym version <0.26 has only 4 items (no truncation) new_step_api = False else: obs, reward, term, trunc, info = step_result new_step_api = True self.frames.append(obs) reward = float(reward) if new_step_api: return self._get_ob(), reward, term, trunc, info return self._get_ob(), reward, done, info.get("TimeLimit.truncated", False), info def _get_ob(self) -> np.ndarray: # the original wrapper use `LazyFrames` but since we use np buffer, # it has no effect return np.stack(self.frames, axis=0) def wrap_deepmind( env: gym.Env, episode_life: bool = True, clip_rewards: bool = True, frame_stack: int = 4, scale: bool = False, warp_frame: bool = True, ) -> ( MaxAndSkipEnv | EpisodicLifeEnv | FireResetEnv | WarpFrame | ScaledFloatFrame | ClipRewardEnv | FrameStack ): """Configure environment for DeepMind-style Atari. The observation is channel-first: (c, h, w) instead of (h, w, c). :param env: the Atari environment to wrap. :param bool episode_life: wrap the episode life wrapper. :param bool clip_rewards: wrap the reward clipping wrapper. :param int frame_stack: wrap the frame stacking wrapper. :param bool scale: wrap the scaling observation wrapper. :param bool warp_frame: wrap the grayscale + resize observation wrapper. :return: the wrapped atari environment. """ env = NoopResetEnv(env, noop_max=30) env = MaxAndSkipEnv(env, skip=4) assert hasattr(env.unwrapped, "get_action_meanings") # for mypy wrapped_env: MaxAndSkipEnv | EpisodicLifeEnv | FireResetEnv | WarpFrame | ScaledFloatFrame | ClipRewardEnv | FrameStack = ( env ) if episode_life: wrapped_env = EpisodicLifeEnv(wrapped_env) if "FIRE" in env.unwrapped.get_action_meanings(): wrapped_env = FireResetEnv(wrapped_env) if warp_frame: wrapped_env = WarpFrame(wrapped_env) if scale: wrapped_env = ScaledFloatFrame(wrapped_env) if clip_rewards: wrapped_env = ClipRewardEnv(wrapped_env) if frame_stack: wrapped_env = FrameStack(wrapped_env, frame_stack) return wrapped_env def make_atari_env( task: str, seed: int, training_num: int, test_num: int, scale: int | bool = False, frame_stack: int = 4, ) -> tuple[Env, BaseVectorEnv, BaseVectorEnv]: """Wrapper function for Atari env. If EnvPool is installed, it will automatically switch to EnvPool's Atari env. :return: a tuple of (single env, training envs, test envs). """ env_factory = AtariEnvFactory(task, seed, seed + training_num, frame_stack, scale=bool(scale)) envs = env_factory.create_envs(training_num, test_num) return envs.env, envs.train_envs, envs.test_envs class AtariEnvFactory(EnvFactoryRegistered): def __init__( self, task: str, train_seed: int, test_seed: int, frame_stack: int, scale: bool = False, use_envpool_if_available: bool = True, venv_type: VectorEnvType = VectorEnvType.SUBPROC_SHARED_MEM_AUTO, ) -> None: assert "NoFrameskip" in task self.frame_stack = frame_stack self.scale = scale envpool_factory = None if use_envpool_if_available: if envpool_is_available: envpool_factory = self.EnvPoolFactoryAtari(self) log.info("Using envpool, because it available") else: log.info("Not using envpool, because it is not available") super().__init__( task=task, train_seed=train_seed, test_seed=test_seed, venv_type=venv_type, envpool_factory=envpool_factory, ) def create_env(self, mode: EnvMode) -> gym.Env: env = super().create_env(mode) is_train = mode == EnvMode.TRAIN return wrap_deepmind( env, episode_life=is_train, clip_rewards=is_train, frame_stack=self.frame_stack, scale=self.scale, ) class EnvPoolFactoryAtari(EnvPoolFactory): """Atari-specific envpool creation. Since envpool internally handles the functions that are implemented through the wrappers in `wrap_deepmind`, it sets the creation keyword arguments accordingly. """ def __init__(self, parent: "AtariEnvFactory") -> None: self.parent = parent if self.parent.scale: warnings.warn( "EnvPool does not include ScaledFloatFrame wrapper, " "please compensate by scaling inside your network's forward function (e.g. `x = x / 255.0` for Atari)", ) def _transform_task(self, task: str) -> str: task = super()._transform_task(task) # TODO: Maybe warn user, explain why this is needed return task.replace("NoFrameskip-v4", "-v5") def _transform_kwargs(self, kwargs: dict, mode: EnvMode) -> dict: kwargs = super()._transform_kwargs(kwargs, mode) is_train = mode == EnvMode.TRAIN kwargs["reward_clip"] = is_train kwargs["episodic_life"] = is_train kwargs["stack_num"] = self.parent.frame_stack return kwargs class AtariEpochStopCallback(EpochStopCallback): def __init__(self, task: str) -> None: self.task = task def should_stop(self, mean_rewards: float, context: TrainingContext) -> bool: env = context.envs.env if env.spec and env.spec.reward_threshold: return mean_rewards >= env.spec.reward_threshold if "Pong" in self.task: return mean_rewards >= 20 return False