Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,38 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
# generator= pipeline("text_generation", model="gpt2-large")
|
4 |
-
# def generate_blog(topic):
|
5 |
-
# res= generator(max_length=400, num_return_sequences=3)
|
6 |
-
# return res[0]["generate_text"]
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
|
10 |
-
# text = st.text_area("Enter a topic")
|
11 |
-
# if text:
|
12 |
-
# out=generate_blog(text)
|
13 |
-
# st.json(out)
|
14 |
-
|
15 |
-
import streamlit as st
|
16 |
-
from transformers import pipeline
|
17 |
-
pipe = pipeline("sentiment-analysis")
|
18 |
-
text= st.text_area("Enter your text")
|
19 |
|
20 |
if text:
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
2 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Initialize the tokenizer and model
|
5 |
+
model_name = 'gpt2-large'
|
6 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
7 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
8 |
|
9 |
+
text= st.text_area("Enter your Topic: ")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
if text:
|
13 |
+
# Encode input text
|
14 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
15 |
+
|
16 |
+
# Generate text
|
17 |
+
output = model.generate(
|
18 |
+
input_ids=encoded_input['input_ids'],
|
19 |
+
max_length=50,
|
20 |
+
num_return_sequences=1,
|
21 |
+
no_repeat_ngram_size=2,
|
22 |
+
top_p=0.95,
|
23 |
+
top_k=50
|
24 |
+
)
|
25 |
+
|
26 |
+
# Decode generated text
|
27 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
st.json(generated_text)
|
30 |
+
|
31 |
+
# import streamlit as st
|
32 |
+
# from transformers import pipeline
|
33 |
+
# pipe = pipeline("sentiment-analysis")
|
34 |
+
# text= st.text_area("Enter your text")
|
35 |
+
|
36 |
+
# if text:
|
37 |
+
# output = pipe(text)
|
38 |
+
# st.json(output)
|