Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,9 @@ model_name = 'gpt2-large'
|
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
7 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
8 |
|
|
|
|
|
|
|
9 |
# Text input for the user
|
10 |
text = st.text_area("Enter your Topic: ")
|
11 |
|
@@ -26,11 +29,17 @@ if text:
|
|
26 |
|
27 |
# Decode generated text
|
28 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
29 |
-
|
|
|
|
|
|
|
30 |
except Exception as e:
|
31 |
st.error(f"An error occurred: {e}")
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
7 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
8 |
|
9 |
+
# Set the title for the Streamlit app
|
10 |
+
st.title("GPT-2 Blog Post Generator")
|
11 |
+
|
12 |
# Text input for the user
|
13 |
text = st.text_area("Enter your Topic: ")
|
14 |
|
|
|
29 |
|
30 |
# Decode generated text
|
31 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
# Display the generated text
|
34 |
+
st.subheader("Generated Blog Post")
|
35 |
+
st.write(generated_text)
|
36 |
except Exception as e:
|
37 |
st.error(f"An error occurred: {e}")
|
38 |
|
39 |
+
# Add instructions
|
40 |
+
st.write("""
|
41 |
+
Enter a topic or a starting sentence in the text area above, and the GPT-2 model will generate a blog post for you.
|
42 |
+
""")
|
43 |
+
|
44 |
+
# Streamlit instructions
|
45 |
+
st.write("To run this app, use the command: `streamlit run <script_name>.py`")
|