sabssag commited on
Commit
50c7e7d
·
verified ·
1 Parent(s): e75a48b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -16
app.py CHANGED
@@ -1,31 +1,34 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
- # Load the conversational pipeline
5
- model_name = "./QAModel"
6
- chatbot_pipeline = pipeline("conversational", model=model_name, tokenizer=model_name)
 
 
7
 
8
  # Set the title for the Streamlit app
9
- st.title("Movie Trivia Chatbot")
10
 
11
- # Text input for the user
12
- user_input = st.text_area("Ask a movie trivia question:")
 
13
 
14
- def get_response(user_input):
15
- # Generate response
16
- conversation = chatbot_pipeline(user_input)
17
- return conversation[0]['generated_text']
18
 
19
  if st.button("Get Answer"):
20
- if user_input:
21
- response = get_response(user_input)
22
- # Display the response
23
  st.subheader("Answer")
24
- st.write(response)
25
  else:
26
- st.warning("Please enter a question.")
27
 
28
  # Optionally, add instructions or information about the app
29
  st.write("""
30
- Enter a movie-related question above. The chatbot will provide an answer based on its training.
31
  """)
 
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
+ # Define the path to the saved model
5
+ model_path = './QAModel' # Path to your fine-tuned model
6
+
7
+ # Load the question-answering pipeline
8
+ qa_pipeline = pipeline("question-answering", model=model_path, tokenizer=model_path)
9
 
10
  # Set the title for the Streamlit app
11
+ st.title("Movie Trivia Question Answering")
12
 
13
+ # Text inputs for the user
14
+ context = st.text_area("Enter the context (movie-related text):")
15
+ question = st.text_area("Enter your question:")
16
 
17
+ def generate_answer(question, context):
18
+ # Perform question answering
19
+ result = qa_pipeline(question=question, context=context)
20
+ return result['answer']
21
 
22
  if st.button("Get Answer"):
23
+ if context and question:
24
+ generated_answer = generate_answer(question, context)
25
+ # Display the generated answer
26
  st.subheader("Answer")
27
+ st.write(generated_answer)
28
  else:
29
+ st.warning("Please enter both context and question.")
30
 
31
  # Optionally, add instructions or information about the app
32
  st.write("""
33
+ Enter a movie-related context and a question related to the context above. The model will provide the answer based on the context provided.
34
  """)