sabssag commited on
Commit
c2b0d11
·
verified ·
1 Parent(s): d71e035

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -11
app.py CHANGED
@@ -2,21 +2,24 @@ import streamlit as st
2
  from transformers import pipeline
3
 
4
  # Define the path to the saved model
5
- model_path = './QAModel'
6
 
7
  # Load the question-answering pipeline
8
  qa_pipeline = pipeline("question-answering", model=model_path, tokenizer=model_path)
9
 
10
- # Load the context from a file
11
- context_file = 'contexts.txt'
12
-
13
- with open(context_file, 'r', encoding='utf-8') as f:
14
- default_context = f.read()
15
-
16
  # Set the title for the Streamlit app
17
  st.title("Movie Trivia Question Answering")
18
 
19
- # Text input for the user question
 
 
 
 
 
 
 
 
 
20
  question = st.text_area("Enter your question:")
21
 
22
  def generate_answer(question, context):
@@ -26,7 +29,7 @@ def generate_answer(question, context):
26
 
27
  if st.button("Get Answer"):
28
  if question:
29
- generated_answer = generate_answer(question, default_context)
30
  # Display the generated answer
31
  st.subheader("Answer")
32
  st.write(generated_answer)
@@ -35,5 +38,5 @@ if st.button("Get Answer"):
35
 
36
  # Optionally, add instructions or information about the app
37
  st.write("""
38
- Enter a question related to the provided movie-related context above. The model will provide the answer based on the context provided.
39
- """)
 
2
  from transformers import pipeline
3
 
4
  # Define the path to the saved model
5
+ model_path = './QAModel' # Path to your fine-tuned model
6
 
7
  # Load the question-answering pipeline
8
  qa_pipeline = pipeline("question-answering", model=model_path, tokenizer=model_path)
9
 
 
 
 
 
 
 
10
  # Set the title for the Streamlit app
11
  st.title("Movie Trivia Question Answering")
12
 
13
+ # Load the context from a predefined file
14
+ context_file_path = '/contexts.txt' # Replace with the actual path to your context file
15
+ with open(context_file_path, 'r') as file:
16
+ context = file.read()
17
+
18
+ # Display the context to the user
19
+ st.subheader("Context (movie-related text)")
20
+ st.write(context)
21
+
22
+ # Text input for the user to enter the question
23
  question = st.text_area("Enter your question:")
24
 
25
  def generate_answer(question, context):
 
29
 
30
  if st.button("Get Answer"):
31
  if question:
32
+ generated_answer = generate_answer(question, context)
33
  # Display the generated answer
34
  st.subheader("Answer")
35
  st.write(generated_answer)
 
38
 
39
  # Optionally, add instructions or information about the app
40
  st.write("""
41
+ Enter a question related to the provided movie-related context above. The model will provide the answer based on the context.
42
+ """)