sabssag's picture
Update app.py
c20a099 verified
raw
history blame
1.68 kB
import streamlit as st
from transformers import T5Tokenizer, TFAutoModelForSeq2SeqLM, pipeline
import zipfile
import os
# Define the path to the saved model zip file
zip_model_path = 'T5_samsum-20240723T171755Z-001.zip'
# Define the directory to extract the model
model_dir = './model'
# Unzip the model
with zipfile.ZipFile(zip_model_path, 'r') as zip_ref:
zip_ref.extractall(model_dir)
# After unzipping, the model should be in a specific directory, check the directory structure
model_path = os.path.join(model_dir, 'T5_samsum')
# Verify that the directory exists and contains the necessary files
if not os.path.exists(model_path):
st.error(f"Model directory {model_path} does not exist or is incorrect.")
else:
# Load the tokenizer and model
tokenizer = T5Tokenizer.from_pretrained(model_path)
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_path)
# Create a summarization pipeline
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
# Set the title for the Streamlit app
st.title("T5 Summary Generator")
# Text input for the user
text = st.text_area("Enter your text: ")
def generate_summary(input_text):
# Perform summarization
summary = summarizer(input_text, max_length=200, min_length=40, do_sample=False)
return summary[0]['summary_text']
if st.button("Generate"):
if text:
generated_summary = generate_summary(text)
# Display the generated summary
st.subheader("Generated Summary")
st.write(generated_summary)
else:
st.warning("Please enter some text to generate a summary.")