sabssag commited on
Commit
c366b8a
·
verified ·
1 Parent(s): 658fb68

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -1,10 +1,14 @@
1
  import streamlit as st
2
- from transformers import pipeline, AutoModelForSeq2SeqLM, T5Tokenizer
3
 
4
- # Load T5 model for summarization using PyTorch
5
- model_name = "t5-small"
6
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
7
- tokenizer = T5Tokenizer.from_pretrained(model_name)
 
 
 
 
 
8
  summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
9
 
10
  # Set the title for the Streamlit app
@@ -15,7 +19,7 @@ text = st.text_area("Enter your text: ")
15
 
16
  def generate_summary(input_text):
17
  # Perform summarization
18
- summary = summarizer(input_text, max_length=150, min_length=40, do_sample=False)
19
  return summary[0]['summary_text']
20
 
21
  if st.button("Generate"):
 
1
  import streamlit as st
 
2
 
3
+ from transformers import T5Tokenizer, TFAutoModelForSeq2SeqLM, pipeline
4
+
5
+ # Define the path to the saved model
6
+ model_path = '/T5_samsum-20240723T171755Z-001.zip'
7
+
8
+ # Load the tokenizer and model
9
+ tokenizer = T5Tokenizer.from_pretrained(model_path)
10
+ model = TFAutoModelForSeq2SeqLM.from_pretrained(model_path)
11
+
12
  summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
13
 
14
  # Set the title for the Streamlit app
 
19
 
20
  def generate_summary(input_text):
21
  # Perform summarization
22
+ summary = summarizer(input_text, max_length=200, min_length=40, do_sample=False)
23
  return summary[0]['summary_text']
24
 
25
  if st.button("Generate"):