import streamlit as st from transformers import T5Tokenizer, TFAutoModelForSeq2SeqLM, pipeline # Define the path to the saved model model_path = '/T5_samsum-20240723T171755Z-001.zip' # Load the tokenizer and model tokenizer = T5Tokenizer.from_pretrained(model_path) model = TFAutoModelForSeq2SeqLM.from_pretrained(model_path) summarizer = pipeline("summarization", model=model, tokenizer=tokenizer) # Set the title for the Streamlit app st.title("T5 Summary Generator") # Text input for the user text = st.text_area("Enter your text: ") def generate_summary(input_text): # Perform summarization summary = summarizer(input_text, max_length=200, min_length=40, do_sample=False) return summary[0]['summary_text'] if st.button("Generate"): if text: generated_summary = generate_summary(text) # Display the generated summary st.subheader("Generated Summary") st.write(generated_summary) else: st.warning("Please enter some text to generate a summary.")