sabya87 commited on
Commit
485e41f
·
1 Parent(s): 41f7f80

Update app.py

Browse files

Updated for mms model instead of SpeechT5

Files changed (1) hide show
  1. app.py +17 -9
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,23 +12,31 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
 
 
 
 
32
  return speech.cpu()
33
 
34
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import VitsModel, VitsTokenizer, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ #processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-fra").to(device)
18
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra").to(device)
19
 
20
+ #embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
+ #speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
+ #inputs = processor(text=text, return_tensors="pt")
31
+ #speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
+ inputs = tokenizer(text_example, return_tensors="pt")
33
+ input_ids = inputs["input_ids"]
34
+
35
+
36
+ with torch.no_grad():
37
+ outputs = model(input_ids)
38
+
39
+ speech = outputs.audio[0]
40
  return speech.cpu()
41
 
42