Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisper
|
3 |
+
import torch
|
4 |
+
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
5 |
+
from pyannote.audio import Audio
|
6 |
+
from pyannote.core import Segment
|
7 |
+
import subprocess
|
8 |
+
import wave
|
9 |
+
import numpy as np
|
10 |
+
from sklearn.cluster import AgglomerativeClustering
|
11 |
+
import os
|
12 |
+
import datetime
|
13 |
+
|
14 |
+
# Load models
|
15 |
+
model_size = "medium"
|
16 |
+
whisper_model = whisper.load_model(model_size)
|
17 |
+
embedding_model = PretrainedSpeakerEmbedding(
|
18 |
+
"speechbrain/spkrec-ecapa-voxceleb",
|
19 |
+
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
)
|
21 |
+
audio_processor = Audio()
|
22 |
+
|
23 |
+
def process_audio(file_path, num_speakers):
|
24 |
+
# Convert to WAV if necessary
|
25 |
+
if not file_path.endswith(".wav"):
|
26 |
+
wav_path = file_path.replace(file_path.split('.')[-1], 'wav')
|
27 |
+
subprocess.call(['ffmpeg', '-i', file_path, wav_path, '-y'])
|
28 |
+
file_path = wav_path
|
29 |
+
|
30 |
+
# Get audio duration
|
31 |
+
with wave.open(file_path, 'r') as f:
|
32 |
+
frames = f.getnframes()
|
33 |
+
rate = f.getframerate()
|
34 |
+
duration = frames / float(rate)
|
35 |
+
|
36 |
+
# Transcribe audio
|
37 |
+
result = whisper_model.transcribe(file_path)
|
38 |
+
segments = result["segments"]
|
39 |
+
|
40 |
+
# Generate speaker embeddings
|
41 |
+
embeddings = np.zeros(shape=(len(segments), 192))
|
42 |
+
for i, segment in enumerate(segments):
|
43 |
+
start = segment["start"]
|
44 |
+
end = min(duration, segment["end"])
|
45 |
+
clip = Segment(start, end)
|
46 |
+
waveform, _ = audio_processor.crop(file_path, clip)
|
47 |
+
embeddings[i] = embedding_model(waveform[None])
|
48 |
+
embeddings = np.nan_to_num(embeddings)
|
49 |
+
|
50 |
+
# Perform clustering
|
51 |
+
clustering = AgglomerativeClustering(n_clusters=num_speakers).fit(embeddings)
|
52 |
+
labels = clustering.labels_
|
53 |
+
for i, segment in enumerate(segments):
|
54 |
+
segment["speaker"] = f"SPEAKER {labels[i] + 1}"
|
55 |
+
|
56 |
+
# Generate transcript
|
57 |
+
transcript = []
|
58 |
+
for segment in segments:
|
59 |
+
speaker = segment["speaker"]
|
60 |
+
start_time = str(datetime.timedelta(seconds=round(segment["start"])))
|
61 |
+
text = segment["text"]
|
62 |
+
transcript.append(f"{speaker} ({start_time}): {text}")
|
63 |
+
|
64 |
+
# Clean up
|
65 |
+
os.remove(file_path)
|
66 |
+
return "\n".join(transcript)
|
67 |
+
|
68 |
+
# Gradio interface
|
69 |
+
def diarize(audio_file, num_speakers):
|
70 |
+
file_path = "temp_audio.wav"
|
71 |
+
with open(file_path, "wb") as f:
|
72 |
+
f.write(audio_file.read())
|
73 |
+
return process_audio(file_path, num_speakers)
|
74 |
+
|
75 |
+
# UI
|
76 |
+
interface = gr.Interface(
|
77 |
+
fn=diarize,
|
78 |
+
inputs=[
|
79 |
+
gr.Audio(source="upload", type="file", label="Upload Audio File"),
|
80 |
+
gr.Number(label="Number of Speakers", value=2, precision=0),
|
81 |
+
],
|
82 |
+
outputs=gr.Textbox(label="Transcript"),
|
83 |
+
title="Speaker Diarization & Transcription",
|
84 |
+
description="Upload an audio file, specify the number of speakers, and get a diarized transcript."
|
85 |
+
)
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
interface.launch()
|