Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,98 @@
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
import torch
|
|
|
4 |
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
5 |
from pyannote.audio import Audio
|
6 |
from pyannote.core import Segment
|
7 |
import subprocess
|
8 |
import wave
|
9 |
-
import
|
10 |
from sklearn.cluster import AgglomerativeClustering
|
11 |
-
import
|
12 |
import datetime
|
13 |
|
14 |
# Load models
|
15 |
-
model_size = "medium"
|
16 |
-
whisper_model = whisper.load_model(model_size)
|
17 |
embedding_model = PretrainedSpeakerEmbedding(
|
18 |
"speechbrain/spkrec-ecapa-voxceleb",
|
19 |
-
device=torch.device("cuda" if
|
20 |
)
|
21 |
audio_processor = Audio()
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Get audio duration
|
31 |
-
with wave.open(
|
32 |
frames = f.getnframes()
|
33 |
rate = f.getframerate()
|
34 |
duration = frames / float(rate)
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
segments = result["segments"]
|
39 |
-
|
40 |
-
# Generate speaker embeddings
|
41 |
-
embeddings = np.zeros(shape=(len(segments), 192))
|
42 |
-
for i, segment in enumerate(segments):
|
43 |
start = segment["start"]
|
44 |
end = min(duration, segment["end"])
|
45 |
clip = Segment(start, end)
|
46 |
-
waveform,
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
embeddings = np.nan_to_num(embeddings)
|
49 |
|
50 |
# Perform clustering
|
51 |
clustering = AgglomerativeClustering(n_clusters=num_speakers).fit(embeddings)
|
52 |
labels = clustering.labels_
|
53 |
-
for i
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
# Generate transcript
|
57 |
transcript = []
|
58 |
-
for segment in segments:
|
59 |
-
speaker
|
60 |
-
|
61 |
-
|
62 |
-
transcript.append(f"{speaker} ({start_time}): {text}")
|
63 |
|
64 |
-
#
|
65 |
-
os.remove(file_path)
|
66 |
return "\n".join(transcript)
|
67 |
|
68 |
# Gradio interface
|
69 |
-
def diarize(audio_file, num_speakers):
|
70 |
-
|
71 |
-
with open(file_path, "wb") as f:
|
72 |
-
f.write(audio_file.read())
|
73 |
-
return process_audio(file_path, num_speakers)
|
74 |
|
75 |
-
# UI
|
76 |
interface = gr.Interface(
|
77 |
fn=diarize,
|
78 |
inputs=[
|
79 |
-
gr.Audio(
|
80 |
gr.Number(label="Number of Speakers", value=2, precision=0),
|
|
|
81 |
],
|
82 |
outputs=gr.Textbox(label="Transcript"),
|
83 |
title="Speaker Diarization & Transcription",
|
84 |
description="Upload an audio file, specify the number of speakers, and get a diarized transcript."
|
85 |
)
|
86 |
|
|
|
87 |
if __name__ == "__main__":
|
88 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
import torch
|
4 |
+
import pyannote.audio
|
5 |
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
6 |
from pyannote.audio import Audio
|
7 |
from pyannote.core import Segment
|
8 |
import subprocess
|
9 |
import wave
|
10 |
+
import contextlib
|
11 |
from sklearn.cluster import AgglomerativeClustering
|
12 |
+
import numpy as np
|
13 |
import datetime
|
14 |
|
15 |
# Load models
|
|
|
|
|
16 |
embedding_model = PretrainedSpeakerEmbedding(
|
17 |
"speechbrain/spkrec-ecapa-voxceleb",
|
18 |
+
device=torch.device("cpu") # Use "cuda" if a GPU is available
|
19 |
)
|
20 |
audio_processor = Audio()
|
21 |
|
22 |
+
# Function to process the audio file and extract transcript and diarization
|
23 |
+
def process_audio(audio_file, num_speakers, model_size="medium", language="English"):
|
24 |
+
# Save the uploaded file to a path
|
25 |
+
path = "/tmp/uploaded_audio.wav"
|
26 |
+
with open(path, "wb") as f:
|
27 |
+
f.write(audio_file.read())
|
28 |
+
|
29 |
+
# Convert audio to WAV if it's not already
|
30 |
+
if path[-3:] != 'wav':
|
31 |
+
wav_path = path.replace(path.split('.')[-1], 'wav')
|
32 |
+
subprocess.call(['ffmpeg', '-i', path, wav_path, '-y'])
|
33 |
+
path = wav_path
|
34 |
+
|
35 |
+
# Load Whisper model
|
36 |
+
model = whisper.load_model(model_size)
|
37 |
+
result = model.transcribe(path)
|
38 |
+
segments = result["segments"]
|
39 |
|
40 |
# Get audio duration
|
41 |
+
with contextlib.closing(wave.open(path, 'r')) as f:
|
42 |
frames = f.getnframes()
|
43 |
rate = f.getframerate()
|
44 |
duration = frames / float(rate)
|
45 |
|
46 |
+
# Function to generate segment embeddings
|
47 |
+
def segment_embedding(segment):
|
|
|
|
|
|
|
|
|
|
|
48 |
start = segment["start"]
|
49 |
end = min(duration, segment["end"])
|
50 |
clip = Segment(start, end)
|
51 |
+
waveform, sample_rate = audio_processor.crop(path, clip)
|
52 |
+
return embedding_model(waveform[None])
|
53 |
+
|
54 |
+
embeddings = np.zeros(shape=(len(segments), 192))
|
55 |
+
for i, segment in enumerate(segments):
|
56 |
+
embeddings[i] = segment_embedding(segment)
|
57 |
+
|
58 |
embeddings = np.nan_to_num(embeddings)
|
59 |
|
60 |
# Perform clustering
|
61 |
clustering = AgglomerativeClustering(n_clusters=num_speakers).fit(embeddings)
|
62 |
labels = clustering.labels_
|
63 |
+
for i in range(len(segments)):
|
64 |
+
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
65 |
+
|
66 |
+
# Format the transcript
|
67 |
+
def time(secs):
|
68 |
+
return str(datetime.timedelta(seconds=round(secs)))
|
69 |
|
|
|
70 |
transcript = []
|
71 |
+
for i, segment in enumerate(segments):
|
72 |
+
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
73 |
+
transcript.append(f"\n{segment['speaker']} {time(segment['start'])}")
|
74 |
+
transcript.append(segment["text"][1:]) # Remove leading whitespace
|
|
|
75 |
|
76 |
+
# Return the final transcript as a string
|
|
|
77 |
return "\n".join(transcript)
|
78 |
|
79 |
# Gradio interface
|
80 |
+
def diarize(audio_file, num_speakers, model_size="medium"):
|
81 |
+
return process_audio(audio_file, num_speakers, model_size)
|
|
|
|
|
|
|
82 |
|
83 |
+
# Gradio UI
|
84 |
interface = gr.Interface(
|
85 |
fn=diarize,
|
86 |
inputs=[
|
87 |
+
gr.Audio(type="file", label="Upload Audio File"), # Removed 'source' argument
|
88 |
gr.Number(label="Number of Speakers", value=2, precision=0),
|
89 |
+
gr.Radio(["tiny", "base", "small", "medium", "large"], label="Model Size", value="medium")
|
90 |
],
|
91 |
outputs=gr.Textbox(label="Transcript"),
|
92 |
title="Speaker Diarization & Transcription",
|
93 |
description="Upload an audio file, specify the number of speakers, and get a diarized transcript."
|
94 |
)
|
95 |
|
96 |
+
# Run the Gradio app
|
97 |
if __name__ == "__main__":
|
98 |
interface.launch()
|