File size: 3,470 Bytes
5c04fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f28f8fa
 
5c04fc9
 
 
 
 
 
 
 
 
f28f8fa
5c04fc9
 
 
 
 
 
 
f28f8fa
 
 
 
 
 
5c04fc9
 
 
 
 
f28f8fa
5c04fc9
 
 
 
 
f28f8fa
 
5c04fc9
f28f8fa
5c04fc9
f28f8fa
 
 
5c04fc9
 
f28f8fa
5c04fc9
 
 
f28f8fa
5c04fc9
 
f28f8fa
5c04fc9
 
 
 
 
 
f28f8fa
5c04fc9
f28f8fa
5c04fc9
 
f28f8fa
 
 
 
5c04fc9
 
f28f8fa
 
 
 
 
 
 
 
 
 
 
 
5c04fc9
 
 
 
 
 
f28f8fa
 
5c04fc9
 
 
f28f8fa
5c04fc9
f28f8fa
5c04fc9
f28f8fa
5c04fc9
 
 
f28f8fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
import tensorflow as tf
import keras_ocr
import requests
import cv2
import os
import csv
import numpy as np
import pandas as pd
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
import scipy.ndimage.interpolation as inter
import easyocr
import datasets
from datasets import load_dataset, Image
from PIL import Image
from paddleocr import PaddleOCR
from save_data import flag
from transformers import pipeline  # Importing the pipeline

"""
Paddle OCR
"""
def ocr_with_paddle(img):
    finaltext = ''
    ocr = PaddleOCR(lang='en', use_angle_cls=True)
    result = ocr.ocr(img)
    for i in range(len(result[0])):
        text = result[0][i][1][0]
        finaltext += ' ' + text
    return finaltext

"""
Keras OCR
"""
def ocr_with_keras(img):
    output_text = ''
    pipeline = keras_ocr.pipeline.Pipeline()
    images = [keras_ocr.tools.read(img)]
    predictions = pipeline.recognize(images)
    first = predictions[0]
    for text, box in first:
        output_text += ' ' + text
    return output_text

"""
easy OCR
"""
# grayscale image
def get_grayscale(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Thresholding or Binarization
def thresholding(src):
    return cv2.threshold(src, 127, 255, cv2.THRESH_TOZERO)[1]

def ocr_with_easy(img):
    gray_scale_image = get_grayscale(img)
    thresholding(gray_scale_image)
    cv2.imwrite('image.png', gray_scale_image)
    reader = easyocr.Reader(['th', 'en'])
    bounds = reader.readtext('image.png', paragraph="False", detail=0)
    bounds = ''.join(bounds)
    return bounds

"""
Generate OCR
"""
def generate_ocr(Method, img):
    text_output = ''
    if (img).any():
        print("Method___________________", Method)
        if Method == 'EasyOCR':
            text_output = ocr_with_easy(img)
        if Method == 'KerasOCR':
            text_output = ocr_with_keras(img)
        if Method == 'PaddleOCR':
            text_output = ocr_with_paddle(img)
        
        try:
            flag(Method, text_output, img)
        except Exception as e:
            print(e)
        
        # Generate Text using FLAN-T5 model
        text_gen = generate_text_with_flan_t5(text_output)
        return text_gen
    else:
        raise gr.Error("Please upload an image!!!!")

"""
Text Generation using FLAN-T5
"""
def generate_text_with_flan_t5(input_text):
    # Load the pre-trained FLAN-T5 model
    pipe = pipeline("text2text-generation", model="google/flan-t5-large")

    # Use the model to generate a response based on the OCR output
    output = pipe(input_text)
    return output[0]['generated_text']


"""
Create user interface for OCR demo
"""

image = gr.Image()
method = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR")
output = gr.Textbox(label="Generated Text")

demo = gr.Interface(
    generate_ocr,
    [method, image],
    output,
    title="Optical Character Recognition and Text Generation",
    css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}",
    article="""<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at 
                    <a href="mailto:[email protected]" target="_blank">[email protected]</a> 
                    <p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>"""
)

demo.launch()