Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import keras_ocr | |
import requests | |
import cv2 | |
import os | |
import csv | |
import numpy as np | |
import pandas as pd | |
import huggingface_hub | |
from huggingface_hub import Repository | |
from datetime import datetime | |
import scipy.ndimage.interpolation as inter | |
import easyocr | |
import datasets | |
from datasets import load_dataset, Image | |
from PIL import Image | |
from paddleocr import PaddleOCR | |
from save_data import flag | |
from transformers import pipeline # Importing the pipeline | |
""" | |
Paddle OCR | |
""" | |
def ocr_with_paddle(img): | |
finaltext = '' | |
ocr = PaddleOCR(lang='en', use_angle_cls=True) | |
result = ocr.ocr(img) | |
for i in range(len(result[0])): | |
text = result[0][i][1][0] | |
finaltext += ' ' + text | |
return finaltext | |
""" | |
Keras OCR | |
""" | |
def ocr_with_keras(img): | |
output_text = '' | |
pipeline = keras_ocr.pipeline.Pipeline() | |
images = [keras_ocr.tools.read(img)] | |
predictions = pipeline.recognize(images) | |
first = predictions[0] | |
for text, box in first: | |
output_text += ' ' + text | |
return output_text | |
""" | |
easy OCR | |
""" | |
# grayscale image | |
def get_grayscale(image): | |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Thresholding or Binarization | |
def thresholding(src): | |
return cv2.threshold(src, 127, 255, cv2.THRESH_TOZERO)[1] | |
def ocr_with_easy(img): | |
gray_scale_image = get_grayscale(img) | |
thresholding(gray_scale_image) | |
cv2.imwrite('image.png', gray_scale_image) | |
reader = easyocr.Reader(['th', 'en']) | |
bounds = reader.readtext('image.png', paragraph="False", detail=0) | |
bounds = ''.join(bounds) | |
return bounds | |
""" | |
Generate OCR | |
""" | |
def generate_ocr(Method, img): | |
text_output = '' | |
if (img).any(): | |
print("Method___________________", Method) | |
if Method == 'EasyOCR': | |
text_output = ocr_with_easy(img) | |
if Method == 'KerasOCR': | |
text_output = ocr_with_keras(img) | |
if Method == 'PaddleOCR': | |
text_output = ocr_with_paddle(img) | |
try: | |
flag(Method, text_output, img) | |
except Exception as e: | |
print(e) | |
# Generate Text using FLAN-T5 model | |
text_gen = generate_text_with_flan_t5(text_output) | |
return text_gen | |
else: | |
raise gr.Error("Please upload an image!!!!") | |
""" | |
Text Generation using FLAN-T5 | |
""" | |
def generate_text_with_flan_t5(input_text): | |
# Load the pre-trained FLAN-T5 model | |
pipe = pipeline("text2text-generation", model="google/flan-t5-large") | |
# Use the model to generate a response based on the OCR output | |
output = pipe(input_text) | |
return output[0]['generated_text'] | |
""" | |
Create user interface for OCR demo | |
""" | |
image = gr.Image() | |
method = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR") | |
output = gr.Textbox(label="Generated Text") | |
demo = gr.Interface( | |
generate_ocr, | |
[method, image], | |
output, | |
title="Optical Character Recognition and Text Generation", | |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", | |
article="""<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at | |
<a href="mailto:[email protected]" target="_blank">[email protected]</a> | |
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""" | |
) | |
demo.launch() | |