Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from dotenv import load_dotenv | |
from langchain.llms import HuggingFaceEndpoint | |
load_dotenv() | |
os.environ["HUGGINGFACEHUB_API_TOKEN"]=os.getenv("HF_TOKEN") | |
huggingface_token = os.environ["HUGGINGFACEHUB_API_TOKEN"] | |
#Function to return the response | |
def load_answer(question): | |
# "text-davinci-003" model is depreciated, so using the latest one https://platform.openai.com/docs/deprecations | |
if question: | |
llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2") | |
#Last week langchain has recommended to use invoke function for the below please :) | |
answer=llm.invoke(question) | |
return answer | |
#App UI starts here | |
st.set_page_config(page_title="LangChain Demo - Mistral", page_icon=":robot:") | |
st.header("LangChain Demo - Mistral") | |
#Gets the user input | |
def get_text(): | |
input_text = st.text_input("You: ", key="input") | |
return input_text | |
user_input=get_text() | |
response = load_answer(user_input) | |
submit = st.button('Generate') | |
#If generate button is clicked | |
if submit: | |
st.subheader("Answer:") | |
st.write(response) |