File size: 11,450 Bytes
0874d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch.optim as optim
import pytorch_lightning as pl
import timm
from torchmetrics import Accuracy, Precision, Recall, F1Score
import torch



class timm_backbones(pl.LightningModule):
    """
    PyTorch Lightning model for image classification using a ResNet-18 architecture.

    This model uses a pre-trained ResNet-18 model and fine-tunes it for a specific number of classes.

    Args:
        num_classes (int, optional): The number of classes in the dataset. Defaults to 2.
        optimizer_cfg (DictConfig, optional): A Hydra configuration object for the optimizer.

    Methods:
        forward(x): Computes the forward pass of the model.
        configure_optimizers(): Configures the optimizer for the model.
        training_step(batch, batch_idx): Performs a training step on the model.
        validation_step(batch, batch_idx): Performs a validation step on the model.
        on_validation_epoch_end(): Called at the end of each validation epoch.
        test_step(batch, batch_idx): Performs a test step on the model.

    Example:
        model = ResNet18(num_classes=2, optimizer_cfg=cfg.model.optimizer)
        trainer.fit(model, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader)
        trainer.test(model, dataloaders=test_dataloader)
    """
    def __init__(self, encoder='resnet18', num_classes=2, optimizer_cfg=None, l1_lambda=0.0):
        super().__init__()

        self.encoder = encoder
        self.model = timm.create_model(encoder, pretrained=True)
        if self.model.default_cfg["input_size"][1] == 3:  # If model expects 3 channels
            self.model.conv1 = torch.nn.Conv2d(
                in_channels=1,  # Change to single channel
                out_channels=self.model.conv1.out_channels,
                kernel_size=self.model.conv1.kernel_size,
                stride=self.model.conv1.stride,
                padding=self.model.conv1.padding,
                bias=False
            )

        self.accuracy = Accuracy(task="multiclass", num_classes=num_classes)
        self.precision = Precision(task="multiclass", num_classes=num_classes)
        self.recall = Recall(task="multiclass", num_classes=num_classes)
        self.f1 = F1Score(task="multiclass", num_classes=num_classes)

        self.l1_lambda = l1_lambda
        if hasattr(self.model, 'fc'):  # For models with 'fc' as the classification layer
            in_features = self.model.fc.in_features
            self.model.fc = torch.nn.Linear(in_features, num_classes)
        elif hasattr(self.model, 'classifier'):  # For models with 'classifier'
            in_features = self.model.classifier.in_features
            self.model.classifier = torch.nn.Linear(in_features, num_classes)
        elif hasattr(self.model, 'head'):  # For models with 'head'
            in_features = self.model.head.in_features
            self.model.head = torch.nn.Linear(in_features, num_classes)
        else:
            raise ValueError(f"Unsupported model architecture for encoder: {encoder}")

        if optimizer_cfg is not None:
            optimizer_name = optimizer_cfg.name
            optimizer_lr = optimizer_cfg.lr
            optimizer_weight_decay = optimizer_cfg.weight_decay

            if optimizer_name == 'Adam':
                self.optimizer = optim.Adam(self.parameters(), lr=optimizer_lr, weight_decay=optimizer_weight_decay)
            elif optimizer_name == 'SGD':
                self.optimizer = optim.SGD(self.parameters(), lr=optimizer_lr, weight_decay=optimizer_weight_decay)
            else:
                raise ValueError(f"Unsupported optimizer: {optimizer_name}")
        else:
            self.optimizer = None

    def forward(self, x):
        return self.model(x)

    def configure_optimizers(self):
        optimizer = self.optimizer
        scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.2, patience=20, min_lr=5e-5)
        return {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "val_loss"}

    def training_step(self, batch, batch_idx):
        x, y = batch
        y = y.long()

        # Compute predictions and loss
        logits = self(x)
        loss = torch.nn.functional.cross_entropy(logits, y)

        # Add L1 regularization
        l1_norm = sum(param.abs().sum() for param in self.parameters())
        loss += self.l1_lambda * l1_norm

        self.log('train_loss', loss, prog_bar=True, on_epoch=True, on_step=False, logger=True)

        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        y = y.long()

        logits = self(x)
        loss = torch.nn.functional.cross_entropy(logits, y)

        preds = torch.argmax(logits, dim=1)
        accuracy = self.accuracy(y, preds)
        precision = self.precision(y, preds)
        recall = self.recall(y, preds)
        f1 = self.f1(y, preds)

        self.log('val_loss', loss, prog_bar=True, on_epoch=True, on_step=True)
        self.log('val_acc', accuracy, prog_bar=True, on_epoch=True, on_step=True)
        self.log('val_precision', precision, prog_bar=True, on_epoch=True, on_step=True)
        self.log('val_recall', recall, prog_bar=True, on_epoch=True, on_step=True)
        self.log('val_f1', f1, prog_bar=True, on_epoch=True, on_step=True)

        return loss

    def on_validation_epoch_end(self):
        avg_loss = self.trainer.logged_metrics['val_loss_epoch']
        accuracy = self.trainer.logged_metrics['val_acc_epoch']

        self.log('val_loss', avg_loss, prog_bar=True, on_epoch=True)
        self.log('val_acc', accuracy, prog_bar=True, on_epoch=True)

        return {'Average Loss:': avg_loss, 'Accuracy:': accuracy}

    def test_step(self, batch, batch_idx):
        x, y = batch
        y = y.long()
        logits = self(x)
        loss = torch.nn.functional.cross_entropy(logits, y)

        preds = torch.argmax(logits, dim=1)
        accuracy = self.accuracy(y, preds)
        precision = self.precision(y, preds)
        recall = self.recall(y, preds)
        f1 = self.f1(y, preds)

        # Log test metrics
        self.log('test_loss', loss, prog_bar=True, logger=True)
        self.log('test_acc', accuracy, prog_bar=True, logger=True)
        self.log('test_precision', precision, prog_bar=True, logger=True)
        self.log('test_recall', recall, prog_bar=True, logger=True)
        self.log('test_f1', f1, prog_bar=True, logger=True)

        return {'test_loss': loss, 'test_accuracy': accuracy, 'test_precision': precision, 'test_recall': recall, 'test_f1': f1}



class CTCEncoderPL(pl.LightningModule):
    def __init__(self, ctc_encoder, num_classes, optimizer_cfg):
        super(CTCEncoderPL, self).__init__()
        self.ctc_encoder = ctc_encoder
        self.ctc_loss = torch.nn.CTCLoss(blank=0, zero_infinity=True)
        self.optimizer_cfg = optimizer_cfg
        self.accuracy = Accuracy(task="multiclass", num_classes=num_classes)
        self.precision = Precision(task="multiclass", num_classes=num_classes)
        self.recall = Recall(task="multiclass", num_classes=num_classes)
        self.f1 = F1Score(task="multiclass", num_classes=num_classes)


        if optimizer_cfg is not None:
            optimizer_name = optimizer_cfg.name
            optimizer_lr = optimizer_cfg.lr
            optimizer_weight_decay = optimizer_cfg.weight_decay

            if optimizer_name == 'Adam':
                self.optimizer = optim.Adam(self.parameters(), lr=optimizer_lr, weight_decay=optimizer_weight_decay)
            elif optimizer_name == 'SGD':
                self.optimizer = optim.SGD(self.parameters(), lr=optimizer_lr, weight_decay=optimizer_weight_decay)
            else:
                raise ValueError(f"Unsupported optimizer: {optimizer_name}")
        else:
            self.optimizer = None
    def forward(self, x):
        return self.ctc_encoder(x)
    
    def training_step(self, batch, batch_idx):
        x, y, input_lengths, target_lengths = batch

        logits, input_lengths = self.ctc_encoder(x, input_lengths)
        log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
        loss = self.ctc_loss(log_probs, y, input_lengths, target_lengths)
        assert input_lengths.size(0) == x.size(0), f"input_lengths size ({input_lengths.size(0)}) must match batch size ({x.size(0)})"
        preds = torch.argmax(log_probs, dim=-1)
        self.log("train_loss", loss, on_epoch=True)
        return loss

    def validation_step(self, batch, batch_idx):
        x, y, input_lengths, target_lengths = batch

        # Compute logits and adjust input lengths
        logits, input_lengths = self.ctc_encoder(x, input_lengths)
        log_probs = torch.nn.functional.log_softmax(logits, dim=-1)

        # Validate input_lengths size
        assert input_lengths.size(0) == logits.size(0), "Mismatch between input_lengths and batch size"

        # Compute CTC loss
        loss = self.ctc_loss(log_probs, y, input_lengths, target_lengths)

        # Compute metrics
        preds = torch.argmax(log_probs, dim=-1)
        accuracy = self.accuracy(y, preds)
        precision = self.precision(y, preds)
        recall = self.recall(y, preds)
        f1 = self.f1(y, preds)

        # Log metrics
        self.log('val_loss', loss, prog_bar=True, on_epoch=True, on_step=True)
        self.log('val_acc', accuracy, prog_bar=True, on_epoch=True, on_step=True)
        self.log('val_precision', precision, prog_bar=True, on_epoch=True, on_step=True)
        self.log('val_recall', recall, prog_bar=True, on_epoch=True, on_step=True)
        self.log('val_f1', f1, prog_bar=True, on_epoch=True, on_step=True)

        return loss

    def on_validation_epoch_end(self):
        avg_loss = self.trainer.logged_metrics['val_loss_epoch']
        accuracy = self.trainer.logged_metrics['val_acc_epoch']

        self.log('val_loss', avg_loss, prog_bar=True, on_epoch=True)
        self.log('val_acc', accuracy, prog_bar=True, on_epoch=True)

        return {'Average Loss:': avg_loss, 'Accuracy:': accuracy}

    def test_step(self, batch, batch_idx):
        x, y, input_lengths, target_lengths = batch
        logits = self(x)
        log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
        loss = self.ctc_loss(log_probs, y, input_lengths, target_lengths)

        preds = torch.argmax(log_probs, dim=-1)
        accuracy = self.accuracy(y, preds)
        precision = self.precision(y, preds)
        recall = self.recall(y, preds)
        f1 = self.f1(y, preds)

        self.log('test_loss', loss, prog_bar=True, logger=True)
        self.log('test_acc', accuracy, prog_bar=True, logger=True)
        self.log('test_precision', precision, prog_bar=True, logger=True)
        self.log('test_recall', recall, prog_bar=True, logger=True)
        self.log('test_f1', f1, prog_bar=True, logger=True)

        return {'test_loss': loss, 'test_accuracy': accuracy, 'test_precision': precision, 'test_recall': recall, 'test_f1': f1}

    def configure_optimizers(self):
        optimizer = self.optimizer
        scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.2, patience=20, min_lr=5e-5)
        return {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "val_loss"}
    
    def greedy_decode(self, log_probs):
        """
        Perform greedy decoding to get predictions from log probabilities.
        """
        preds = torch.argmax(log_probs, dim=-1)
        return preds