File size: 10,707 Bytes
0874d87
 
 
 
 
5fc7eb1
0874d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fc7eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0874d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import pytorch_lightning as pl
import torch
from torchmetrics import Accuracy, Precision, Recall, F1Score
from transformers import Wav2Vec2Model, Wav2Vec2ForSequenceClassification
import torch.nn.functional as F
from models.lora import LinearWithLoRA, LoRALayer

class Wav2Vec2Classifier(pl.LightningModule):
    def __init__(self, num_classes, optimizer_cfg = "Adam", l1_lambda=0.0):
        super(Wav2Vec2Classifier, self).__init__()
        self.save_hyperparameters()

        # Wav2Vec2 backbone
        # self.wav2vec2 = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.wav2vec2 = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-large-xlsr-53")

        # trying without the need to fine tune it 
        for param in self.wav2vec2.parameters():
            param.requires_grad = False
        # Classification head
        self.classifier = torch.nn.Linear(self.wav2vec2.config.hidden_size, num_classes)

        # Metrics
        self.accuracy = Accuracy(task="multiclass", num_classes=num_classes)
        self.precision = Precision(task="multiclass", num_classes=num_classes)
        self.recall = Recall(task="multiclass", num_classes=num_classes)
        self.f1 = F1Score(task="multiclass", num_classes=num_classes)

        self.l1_lambda = l1_lambda
        if optimizer_cfg is not None:
            optimizer_name = optimizer_cfg.name
            optimizer_lr = optimizer_cfg.lr
            optimizer_weight_decay = optimizer_cfg.weight_decay

            if optimizer_name == 'Adam':
                self.optimizer = torch.optim.Adam(self.parameters(), lr=optimizer_lr, weight_decay=optimizer_weight_decay)
            elif optimizer_name == 'SGD':
                self.optimizer = torch.optim.SGD(self.parameters(), lr=optimizer_lr, weight_decay=optimizer_weight_decay)
            else:
                raise ValueError(f"Unsupported optimizer: {optimizer_name}")
        else:
            self.optimizer = None

    def forward(self, x, attention_mask=None):
        # Debug input shape

        # Ensure input shape is [batch_size, sequence_length]
        if x.dim() > 2:
            x = x.squeeze(-1)  # Remove unnecessary dimensions if present

        # Pass through Wav2Vec2 backbone
        output = self.wav2vec2(x, attention_mask=attention_mask)
        x = output.last_hidden_state

        # Classification head
        x = torch.mean(x, dim=1)  # Pooling
        logits = self.classifier(x)
        return logits


    def training_step(self, batch, batch_idx):
        x, attention_mask, y = batch

        # Forward pass
        logits = self(x, attention_mask=attention_mask)

        # Compute loss
        loss = F.cross_entropy(logits, y)

        # Add L1 regularization if specified
        l1_norm = sum(param.abs().sum() for param in self.parameters())
        loss += self.l1_lambda * l1_norm

        # Log metrics
        self.log("train_loss", loss, prog_bar=True, logger=True)
        return loss

    def validation_step(self, batch, batch_idx):
        x, attention_mask, y = batch  # Unpack batch

        # Forward pass
        logits = self(x, attention_mask=attention_mask)


        # Compute loss and metrics
        loss = F.cross_entropy(logits, y)
        preds = torch.argmax(logits, dim=1)
        accuracy = self.accuracy(preds, y)
        precision = self.precision(preds, y)
        recall = self.recall(preds, y)
        f1 = self.f1(preds, y)

        # Log metrics
        self.log("val_loss", loss, prog_bar=True, logger=True)
        self.log("val_acc", accuracy, prog_bar=True, logger=True)
        self.log("val_precision", precision, prog_bar=True, logger=True)
        self.log("val_recall", recall, prog_bar=True, logger=True)
        self.log("val_f1", f1, prog_bar=True, logger=True)
        return loss

    def test_step(self, batch, batch_idx):
        x, attention_mask, y = batch  # Unpack batch

        # Forward pass
        logits = self(x, attention_mask=attention_mask)


        # Compute loss and metrics
        loss = F.cross_entropy(logits, y)
        preds = torch.argmax(logits, dim=1)
        accuracy = self.accuracy(preds, y)
        precision = self.precision(preds, y)
        recall = self.recall(preds, y)
        f1 = self.f1(preds, y)

        # Log metrics
        self.log("test_loss", loss, prog_bar=True, logger=True)
        self.log("test_acc", accuracy, prog_bar=True, logger=True)
        self.log("test_precision", precision, prog_bar=True, logger=True)
        self.log("test_recall", recall, prog_bar=True, logger=True)
        self.log("test_f1", f1, prog_bar=True, logger=True)

        return {"test_loss": loss, "test_accuracy": accuracy}

    def configure_optimizers(self):
        optimizer = self.optimizer
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.2, patience=20, min_lr=5e-5)
        return {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "val_loss"}


class Wav2Vec2EmotionClassifier(pl.LightningModule):
    def __init__(self, num_classes, learning_rate=1e-4, freeze_base=False, optimizer_cfg="AdamW"):
        super(Wav2Vec2EmotionClassifier, self).__init__()
        self.save_hyperparameters()

        # Load a pre-trained Wav2Vec2 model optimized for emotion recognition
        self.model = Wav2Vec2ForSequenceClassification.from_pretrained(
            "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim",
            num_labels=num_classes,
        )
        # Optionally freeze the Wav2Vec2 base layers
        if freeze_base:
            for param in self.model.wav2vec2.parameters():
                param.requires_grad = False

        # Metrics
        self.accuracy = Accuracy(task="multiclass", num_classes=num_classes)
        self.precision = Precision(task="multiclass", num_classes=num_classes)
        self.recall = Recall(task="multiclass", num_classes=num_classes)
        self.f1 = F1Score(task="multiclass", num_classes=num_classes)

        self.learning_rate = learning_rate
        if optimizer_cfg is not None:
            optimizer_name = optimizer_cfg['name']
            optimizer_lr = optimizer_cfg['lr']
            optimizer_weight_decay = optimizer_cfg['weight_decay']

            if optimizer_name == 'Adam':
                self.optimizer = torch.optim.Adam(self.parameters(), lr=optimizer_lr, weight_decay=optimizer_weight_decay)
            elif optimizer_name == 'SGD':
                self.optimizer = torch.optim.SGD(self.parameters(), lr=optimizer_lr, weight_decay=optimizer_weight_decay)
            elif optimizer_name == 'AdamW':
                self.optimizer = torch.optim.AdamW(self.parameters(), lr=optimizer_lr, weight_decay=optimizer_weight_decay)
            else:
                raise ValueError(f"Unsupported optimizer: {optimizer_name}")
        else:
            self.optimizer = None

        # Apply LoRA
        low_rank = 8
        lora_alpha = 16
        self.apply_lora(low_rank, lora_alpha)

    def apply_lora(self, rank, alpha):
        # Replace specific linear layers with LinearWithLoRA
        for layer in self.model.wav2vec2.encoder.layers:
            layer.attention.q_proj = LinearWithLoRA(layer.attention.q_proj, rank, alpha)
            layer.attention.k_proj = LinearWithLoRA(layer.attention.k_proj, rank, alpha)
            layer.attention.v_proj = LinearWithLoRA(layer.attention.v_proj, rank, alpha)
            layer.attention.out_proj = LinearWithLoRA(layer.attention.out_proj, rank, alpha)

            layer.feed_forward.intermediate_dense = LinearWithLoRA(layer.feed_forward.intermediate_dense, rank, alpha)
            layer.feed_forward.output_dense = LinearWithLoRA(layer.feed_forward.output_dense, rank, alpha)

    def state_dict(self, *args, **kwargs):
        # Save only LoRA and classifier/projector parameters
        state = super().state_dict(*args, **kwargs)
        return {k: v for k, v in state.items() if "lora" in k or "classifier" in k or "projector" in k}

    def load_state_dict(self, state_dict, strict=True):
        missing_keys, unexpected_keys = super().load_state_dict(state_dict, strict=False)
        if missing_keys or unexpected_keys:
            print(f"Missing keys: {missing_keys}")
            print(f"Unexpected keys: {unexpected_keys}")
    def forward(self, x, attention_mask=None):
        return self.model(x, attention_mask=attention_mask).logits

    def training_step(self, batch, batch_idx):
        x, attention_mask, y = batch

        # Forward pass
        logits = self(x, attention_mask=attention_mask)

        # Compute loss
        loss = F.cross_entropy(logits, y)

        # Log training loss
        self.log("train_loss", loss, prog_bar=True, logger=True)
        return loss

    def validation_step(self, batch, batch_idx):
        x, attention_mask, y = batch

        # Forward pass
        logits = self(x, attention_mask=attention_mask)

        # Compute loss and metrics
        loss = F.cross_entropy(logits, y)
        preds = torch.argmax(logits, dim=1)

        accuracy = self.accuracy(preds, y)
        precision = self.precision(preds, y)
        recall = self.recall(preds, y)
        f1 = self.f1(preds, y)

        # Log metrics
        self.log("val_loss", loss, prog_bar=True, logger=True)
        self.log("val_acc", accuracy, prog_bar=True, logger=True)
        self.log("val_precision", precision, prog_bar=True, logger=True)
        self.log("val_recall", recall, prog_bar=True, logger=True)
        self.log("val_f1", f1, prog_bar=True, logger=True)
        return loss

    def test_step(self, batch, batch_idx):
        x, attention_mask, y = batch

        # Forward pass
        logits = self(x, attention_mask=attention_mask)

        # Compute loss and metrics
        loss = F.cross_entropy(logits, y)
        preds = torch.argmax(logits, dim=1)
        accuracy = self.accuracy(preds, y)
        precision = self.precision(preds, y)
        recall = self.recall(preds, y)
        f1 = self.f1(preds, y)

        # Log metrics
        self.log("test_loss", loss, prog_bar=True, logger=True)
        self.log("test_acc", accuracy, prog_bar=True, logger=True)
        self.log("test_precision", precision, prog_bar=True, logger=True)
        self.log("test_recall", recall, prog_bar=True, logger=True)
        self.log("test_f1", f1, prog_bar=True, logger=True)

        return {"test_loss": loss, "test_accuracy": accuracy}
    def configure_optimizers(self):
        optimizer = self.optimizer
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.2, patience=20, min_lr=5e-5)
        return {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "val_loss"}