FashionGen / config.py
safi842's picture
Files for the app
29cdbe6
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.
import sys
import argparse
import json
from copy import deepcopy
class Config:
def __init__(self, **kwargs):
self.from_args([]) # set all defaults
self.default_args = deepcopy(self.__dict__)
self.from_dict(kwargs) # override
def __str__(self):
custom = {}
default = {}
# Find non-default arguments
for k, v in self.__dict__.items():
if k == 'default_args':
continue
in_default = k in self.default_args
same_value = self.default_args.get(k) == v
if in_default and same_value:
default[k] = v
else:
custom[k] = v
config = {
'custom': custom,
'default': default
}
return json.dumps(config, indent=4)
def __repr__(self):
return self.__str__()
def from_dict(self, dictionary):
for k, v in dictionary.items():
setattr(self, k, v)
return self
def from_args(self, args=sys.argv[1:]):
parser = argparse.ArgumentParser(description='GAN component analysis config')
parser.add_argument('--model', dest='model', type=str, default='StyleGAN', help='The network to analyze') # StyleGAN, DCGAN, ProGAN, BigGAN-XYZ
parser.add_argument('--layer', dest='layer', type=str, default='g_mapping', help='The layer to analyze')
parser.add_argument('--class', dest='output_class', type=str, default=None, help='Output class to generate (BigGAN: Imagenet, ProGAN: LSUN)')
parser.add_argument('--est', dest='estimator', type=str, default='ipca', help='The algorithm to use [pca, fbpca, cupca, spca, ica]')
parser.add_argument('--sparsity', type=float, default=1.0, help='Sparsity parameter of SPCA')
parser.add_argument('--video', dest='make_video', action='store_true', help='Generate output videos (MP4s)')
parser.add_argument('--batch', dest='batch_mode', action='store_true', help="Don't open windows, instead save results to file")
parser.add_argument('-b', dest='batch_size', type=int, default=None, help='Minibatch size, leave empty for automatic detection')
parser.add_argument('-c', dest='components', type=int, default=80, help='Number of components to keep')
parser.add_argument('-n', type=int, default=300_000, help='Number of examples to use in decomposition')
parser.add_argument('--use_w', action='store_true', help='Use W latent space (StyleGAN(2))')
parser.add_argument('--sigma', type=float, default=2.0, help='Number of stdevs to walk in visualize.py')
parser.add_argument('--inputs', type=str, default=None, help='Path to directory with named components')
parser.add_argument('--seed', type=int, default=None, help='Seed used in decomposition')
args = parser.parse_args(args)
return self.from_dict(args.__dict__)