Spaces:
Running
on
Zero
Running
on
Zero
# --- Imports --- | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from duckduckgo_search import DDGS | |
import time | |
import torch | |
from datetime import datetime | |
import os | |
import subprocess | |
import numpy as np | |
from typing import List, Dict, Tuple, Any, Optional, Union | |
from functools import lru_cache | |
# No asyncio needed | |
import threading | |
# No ThreadPoolExecutor needed | |
import warnings | |
import traceback # For detailed error logging | |
import re # For text cleaning | |
import shutil # For checking sudo/file operations | |
import html # For escaping HTML | |
import sys # For sys.path manipulation | |
import spaces # <<<--- IMPORT SPACES FOR THE DECORATOR | |
# --- Configuration --- | |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" | |
MAX_SEARCH_RESULTS = 5 | |
TTS_SAMPLE_RATE = 24000 | |
MAX_TTS_CHARS = 1000 | |
MAX_NEW_TOKENS = 300 | |
TEMPERATURE = 0.7 | |
TOP_P = 0.95 | |
KOKORO_PATH = 'Kokoro-82M' | |
LLM_GPU_DURATION = 120 # Seconds | |
TTS_GPU_DURATION = 60 # Seconds | |
# --- Initialization --- | |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated") | |
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.") | |
# --- LLM Initialization --- | |
llm_model: Optional[AutoModelForCausalLM] = None | |
llm_tokenizer: Optional[AutoTokenizer] = None | |
try: | |
print("[LLM Init] Initializing Language Model...") | |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
llm_tokenizer.pad_token = llm_tokenizer.eos_token | |
llm_device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32 | |
device_map = "auto" | |
print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})") | |
llm_model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, device_map=device_map, low_cpu_mem_usage=True, torch_dtype=torch_dtype, | |
) | |
print(f"[LLM Init] LLM loaded configuration successfully.") | |
llm_model.eval() | |
except Exception as e: | |
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}") | |
print(traceback.format_exc()); llm_model = None; llm_tokenizer = None | |
print("[LLM Init] LLM features will be unavailable.") | |
# --- TTS Initialization --- | |
VOICE_CHOICES = { 'πΊπΈ Female (Default)': 'af', 'πΊπΈ Bella': 'af_bella', 'πΊπΈ Sarah': 'af_sarah', 'πΊπΈ Nicole': 'af_nicole' } | |
TTS_ENABLED = False | |
tts_model: Optional[Any] = None | |
voicepacks: Dict[str, Any] = {} | |
tts_device = "cpu" | |
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess: | |
"""Runs a subprocess command, captures output, and handles errors.""" | |
print(f"Running command: {' '.join(cmd)}") | |
try: | |
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout) | |
# Print output more selectively | |
if not check or result.returncode != 0: | |
if result.stdout: print(f" Stdout: {result.stdout.strip()}") | |
if result.stderr: print(f" Stderr: {result.stderr.strip()}") | |
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd): | |
print(f" Command successful.") | |
return result | |
except FileNotFoundError: print(f" Error: Command not found - {cmd[0]}"); raise | |
except subprocess.TimeoutExpired: print(f" Error: Command timed out - {' '.join(cmd)}"); raise | |
except subprocess.CalledProcessError as e: | |
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})") | |
if e.stdout: print(f" Stdout: {e.stdout.strip()}") | |
if e.stderr: print(f" Stderr: {e.stderr.strip()}") | |
raise | |
def setup_tts_task(): | |
"""Initializes Kokoro TTS model and dependencies (runs in background).""" | |
global TTS_ENABLED, tts_model, voicepacks, tts_device | |
print("[TTS Setup] Starting background initialization...") | |
tts_device_target = "cuda" # Target device when GPU is attached by decorator | |
print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device_target}") | |
can_sudo = shutil.which('sudo') is not None | |
apt_cmd_prefix = ['sudo'] if can_sudo else [] | |
absolute_kokoro_path = os.path.abspath(KOKORO_PATH) | |
try: | |
# 1. Clone/Update Repo | |
if not os.path.exists(absolute_kokoro_path): | |
print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...") | |
try: _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo']) | |
except Exception as lfs_err: print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}") | |
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path]) | |
try: _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path) | |
except Exception as lfs_pull_err: print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}") | |
else: print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.") | |
# 2. Install espeak | |
print("[TTS Setup] Checking/Installing espeak...") | |
try: | |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq']) | |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng']) | |
print("[TTS Setup] espeak-ng installed or already present.") | |
except Exception: | |
print("[TTS Setup] espeak-ng installation failed, trying espeak...") | |
try: _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak']); print("[TTS Setup] espeak installed or already present.") | |
except Exception as espeak_err: print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled."); return | |
# 3. Load Kokoro Model and Voices | |
sys_path_updated = False | |
if os.path.exists(absolute_kokoro_path): | |
print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}"); | |
try: print(f"[TTS Setup] Contents: {os.listdir(absolute_kokoro_path)}") | |
except OSError as list_err: print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}") | |
if absolute_kokoro_path not in sys.path: sys.path.insert(0, absolute_kokoro_path); sys_path_updated = True; print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.") | |
try: | |
print("[TTS Setup] Attempting to import Kokoro modules...") | |
from models import build_model | |
from kokoro import generate as generate_tts_internal | |
print("[TTS Setup] Kokoro modules imported successfully.") | |
globals()['build_model'] = build_model; globals()['generate_tts_internal'] = generate_tts_internal | |
model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth') | |
if not os.path.exists(model_file): print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled."); return | |
print(f"[TTS Setup] Loading TTS model config from {model_file} (to CPU first)...") | |
tts_model = build_model(model_file, 'cpu'); tts_model.eval(); print("[TTS Setup] TTS model structure loaded (CPU).") | |
loaded_voices = 0 | |
for voice_name, voice_id in VOICE_CHOICES.items(): | |
vp_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt') | |
if os.path.exists(vp_path): | |
try: voicepacks[voice_id] = torch.load(vp_path, map_location='cpu'); loaded_voices += 1; print(f"[TTS Setup] Loaded voice: {voice_id} ({voice_name}) to CPU") | |
except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}") | |
else: print(f"[TTS Setup] Info: Voice file {vp_path} not found.") | |
if loaded_voices == 0: print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled."); tts_model = None; return | |
TTS_ENABLED = True; print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}") | |
except ImportError as ie: print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}."); print(traceback.format_exc()) | |
except Exception as load_err: print(f"[TTS Setup] ERROR: Exception during TTS loading: {load_err}. TTS disabled."); print(traceback.format_exc()) | |
finally: | |
if sys_path_updated: # Cleanup sys.path | |
try: | |
if sys.path[0] == absolute_kokoro_path: sys.path.pop(0) | |
elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path) | |
print(f"[TTS Setup] Cleaned up sys.path.") | |
except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}") | |
else: print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.") | |
except Exception as e: print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}"); print(traceback.format_exc()); TTS_ENABLED = False; tts_model = None; voicepacks.clear() | |
print("Starting TTS setup thread...") | |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True) | |
tts_setup_thread.start() | |
# --- Core Logic Functions (Synchronous + @spaces.GPU) --- | |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]: | |
"""Synchronous web search function with caching.""" | |
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})") | |
try: | |
with DDGS() as ddgs: | |
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y')) | |
print(f"[Web Search] Found {len(results)} results.") | |
formatted = [{"id": i + 1, "title": res.get("title", "No Title"), "snippet": res.get("body", "No Snippet"), "url": res.get("href", "#")} for i, res in enumerate(results)] | |
return formatted | |
except Exception as e: print(f"[Web Search] Error: {e}"); return [] | |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str: | |
"""Formats the prompt for the LLM.""" | |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
context_str = "\n\n".join([f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]) if context else "No relevant web context found." | |
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}\n\nCONTEXT:\n---\n{context_str}\n---\n\nUSER: {html.escape(query)}\n\nASSISTANT:""" | |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str: | |
"""Formats search results into HTML for display.""" | |
if not web_results: return "<div class='no-sources'>No sources found.</div>" | |
items_html = "" | |
for res in web_results: | |
title_safe = html.escape(res.get("title", "Source")); snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")); url = html.escape(res.get("url", "#")) | |
items_html += f"""<div class='source-item'><div class='source-number'>[{res['id']}]</div><div class='source-content'><a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a><div class='source-snippet'>{snippet_safe}</div></div></div>""" | |
return f"<div class='sources-container'>{items_html}</div>" | |
def generate_llm_answer(prompt: str) -> str: | |
"""Generates answer using the LLM (Synchronous, GPU-decorated).""" | |
if not llm_model or not llm_tokenizer: print("[LLM Generate] LLM unavailable."); return "Error: Language Model unavailable." | |
print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...") | |
start_time = time.time() | |
try: | |
# ZeroGPU context should place model on GPU here | |
current_device = next(llm_model.parameters()).device; print(f"[LLM Generate] Model device: {current_device}") | |
inputs = llm_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024, return_attention_mask=True).to(current_device) | |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)): | |
outputs = llm_model.generate(inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, top_p=TOP_P, pad_token_id=llm_tokenizer.eos_token_id, eos_token_id=llm_tokenizer.eos_token_id, do_sample=True, num_return_sequences=1) | |
output_ids = outputs[0][inputs.input_ids.shape[1]:]; answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip() | |
if not answer_part: answer_part = "*Model generated empty response.*" | |
end_time = time.time(); print(f"[LLM Generate] Complete in {end_time - start_time:.2f}s.") | |
return answer_part | |
except Exception as e: print(f"[LLM Generate] Error: {e}"); print(traceback.format_exc()); return f"Error generating answer." | |
def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]: | |
"""Generates speech using TTS model (Synchronous, GPU-decorated) with debugging.""" | |
# 1. Check initial state | |
if not TTS_ENABLED: print("[TTS Generate] Skipping: TTS is not enabled."); return None | |
if not tts_model: print("[TTS Generate] Skipping: TTS model object is None."); return None | |
if 'generate_tts_internal' not in globals(): print("[TTS Generate] Skipping: generate_tts_internal not found."); return None | |
print(f"[TTS Generate] Requesting speech (sync, GPU) for text (len {len(text)}), req voice '{voice_id}'...") | |
start_time = time.time() | |
# 2. Check input text validity | |
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model"): | |
print(f"[TTS Generate] Skipping: Invalid/empty text: '{text[:100]}...'") | |
return None | |
try: | |
# 3. Verify and select voice pack | |
actual_voice_id = voice_id | |
if voice_id not in voicepacks: | |
print(f"[TTS Generate] Warn: Voice '{voice_id}' missing. Trying 'af'. Available: {list(voicepacks.keys())}") | |
actual_voice_id = 'af' | |
if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af' missing."); return None | |
print(f"[TTS Generate] Using voice_id: {actual_voice_id}") | |
voice_pack_data = voicepacks[actual_voice_id] | |
if voice_pack_data is None: print(f"[TTS Generate] Error: Voice pack data for '{actual_voice_id}' is None."); return None | |
# 4. Clean text | |
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text); clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL); clean_text = re.sub(r'`[^`]*`', '', clean_text); clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE); clean_text = re.sub(r'[\*#_]', '', clean_text); clean_text = html.unescape(clean_text); clean_text = ' '.join(clean_text.split()) | |
print(f"[TTS Generate] Cleaned text (first 100): '{clean_text[:100]}...'") | |
if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None | |
# 5. Truncate text | |
if len(clean_text) > MAX_TTS_CHARS: | |
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.") | |
clean_text = clean_text[:MAX_TTS_CHARS]; last_punct = max(clean_text.rfind(p) for p in '.?!; '); | |
if last_punct != -1: clean_text = clean_text[:last_punct+1] | |
clean_text += "..." | |
# 6. Prepare for GPU execution | |
current_device = 'cuda' # Assume GPU attached by decorator | |
moved_voice_pack = None | |
gen_func = globals()['generate_tts_internal'] | |
print(f"[TTS Generate] Preparing for generation on device '{current_device}'...") | |
try: | |
# 7. Move model and data to GPU | |
print(f" TTS model device before move: {tts_model.device if hasattr(tts_model, 'device') else 'N/A'}") | |
tts_model.to(current_device) | |
print(f" TTS model device after move: {tts_model.device}") | |
print(" Moving voice pack data to CUDA...") | |
if isinstance(voice_pack_data, dict): moved_voice_pack = {k: v.to(current_device) if isinstance(v, torch.Tensor) else v for k, v in voice_pack_data.items()} | |
elif isinstance(voice_pack_data, torch.Tensor): moved_voice_pack = voice_pack_data.to(current_device) | |
else: moved_voice_pack = voice_pack_data | |
print(" Voice pack data moved (or assumed not tensor).") | |
# 8. Call the internal TTS function | |
print(f"[TTS Generate] Calling Kokoro generate function (language code 'eng')...") | |
# --- Using language code 'eng' --- | |
audio_data, sr = gen_func(tts_model, clean_text, moved_voice_pack, 'eng') | |
print(f"[TTS Generate] Kokoro function returned. Type: {type(audio_data)}, Sample Rate: {sr}") | |
except Exception as kokoro_err: | |
print(f"[TTS Generate] **** ERROR during Kokoro generate call ****: {kokoro_err}") | |
print(traceback.format_exc()); return None | |
finally: | |
# Move model back to CPU | |
try: | |
print("[TTS Generate] Moving TTS model back to CPU...") | |
if tts_model is not None: tts_model.to('cpu') | |
except Exception as move_back_err: print(f"[TTS Generate] Warn: Could not move TTS model back to CPU: {move_back_err}") | |
# 9. Process output audio data | |
if audio_data is None: print("[TTS Generate] Kokoro function returned None."); return None | |
print(f"[TTS Generate] Processing audio output. Type: {type(audio_data)}") | |
if isinstance(audio_data, torch.Tensor): | |
print(f" Original Tensor shape: {audio_data.shape}, dtype: {audio_data.dtype}, device: {audio_data.device}"); audio_np = audio_data.detach().cpu().numpy() | |
elif isinstance(audio_data, np.ndarray): | |
print(f" Original Numpy shape: {audio_data.shape}, dtype: {audio_data.dtype}"); audio_np = audio_data | |
else: print("[TTS Generate] Error: Unexpected audio data type from Kokoro."); return None | |
audio_np = audio_np.flatten().astype(np.float32) | |
print(f"[TTS Generate] Final Numpy Array shape: {audio_np.shape}, dtype: {audio_np.dtype}, min: {np.min(audio_np):.2f}, max: {np.max(audio_np):.2f}") | |
if np.max(np.abs(audio_np)) < 1e-4: print("[TTS Generate] Warning: Generated audio appears silent.") | |
end_time = time.time(); print(f"[TTS Generate] Audio generated successfully in {end_time - start_time:.2f}s.") | |
actual_sr = sr if isinstance(sr, int) and sr > 0 else TTS_SAMPLE_RATE | |
print(f"[TTS Generate] Returning audio tuple with SR={actual_sr}.") | |
return (actual_sr, audio_np) | |
except Exception as e: | |
print(f"[TTS Generate] **** UNEXPECTED ERROR in generate_tts_speech ****: {str(e)}") | |
print(traceback.format_exc()); return None | |
def get_voice_id_from_display(voice_display_name: str) -> str: | |
"""Maps display name to voice ID.""" | |
return VOICE_CHOICES.get(voice_display_name, 'af') | |
# --- Gradio Interaction Logic (Synchronous) --- | |
ChatHistoryType = List[Dict[str, Optional[str]]] | |
def handle_interaction( | |
query: str, | |
history: ChatHistoryType, | |
selected_voice_display_name: str | |
) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]: | |
"""Synchronous function to handle user queries for ZeroGPU.""" | |
print(f"\n--- Handling Query (Sync) ---"); query = query.strip() | |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'") | |
if not query: print("Empty query."); return history, "*Please enter query.*", "<div class='no-sources'>Enter query.</div>", None, gr.Button(value="Search", interactive=True) | |
current_history: ChatHistoryType = history + [{"role": "user", "content": query}, {"role": "assistant", "content": "*Processing...*"}] | |
status_update = "*Processing... Please wait.*"; sources_html = "<div class='searching'><span>Searching...</span></div>"; audio_data = None | |
button_update = gr.Button(value="Processing...", interactive=False); final_answer = "" | |
try: | |
print("[Handler] Web search..."); start_t = time.time() | |
web_results = get_web_results_sync(query); print(f"[Handler] Web search took {time.time()-start_t:.2f}s") | |
sources_html = format_sources_html(web_results) | |
print("[Handler] LLM generation..."); start_t = time.time() | |
llm_prompt = format_llm_prompt(query, web_results) | |
final_answer = generate_llm_answer(llm_prompt); print(f"[Handler] LLM generation took {time.time()-start_t:.2f}s") | |
status_update = final_answer | |
tts_status_message = "" | |
print(f"[Handler] TTS Check: Enabled={TTS_ENABLED}, Model?={tts_model is not None}") | |
if TTS_ENABLED and tts_model is not None and not final_answer.startswith("Error"): | |
print("[Handler] TTS generation..."); start_t = time.time() | |
voice_id = get_voice_id_from_display(selected_voice_display_name) | |
audio_data = generate_tts_speech(final_answer, voice_id) # Call decorated function | |
print(f"[Handler] TTS generation took {time.time()-start_t:.2f}s") | |
print(f"[Handler] Received audio_data: type={type(audio_data)}, shape={(audio_data[1].shape if audio_data else 'N/A')}") | |
if audio_data is None: tts_status_message = "\n\n*(Audio generation failed)*" | |
elif not TTS_ENABLED or tts_model is None: | |
tts_status_message = "\n\n*(TTS unavailable)*" if not tts_setup_thread.is_alive() else "\n\n*(TTS initializing...)*" | |
else: tts_status_message = "\n\n*(Audio skipped due to answer error)*" | |
final_answer_with_status = final_answer + tts_status_message | |
status_update = final_answer_with_status | |
current_history[-1]["content"] = final_answer_with_status # Update final history item | |
button_update = gr.Button(value="Search", interactive=True) | |
print("--- Query Handling Complete (Sync) ---") | |
except Exception as e: | |
print(f"[Handler] Error: {e}"); print(traceback.format_exc()) | |
error_message = f"*Error: {e}*"; current_history[-1]["content"] = error_message | |
status_update = error_message; sources_html = "<div class='error'>Request failed.</div>"; audio_data = None | |
button_update = gr.Button(value="Search", interactive=True) | |
print(f"[Handler] Returning: hist_len={len(current_history)}, status_len={len(status_update)}, sources_len={len(sources_html)}, audio?={audio_data is not None}, button_interact={button_update.interactive}") | |
return current_history, status_update, sources_html, audio_data, button_update | |
# --- Gradio UI Definition --- | |
css = """ | |
/* ... [Your existing refined CSS] ... */ | |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; } | |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); } | |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); } | |
#header h3 { color: #a8a9ab; } | |
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; } | |
.search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; } | |
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; } | |
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; } | |
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; } | |
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;} | |
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; } | |
.search-box input[type="text"]::placeholder { color: #9ca3af !important; } | |
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; } | |
.search-box button:hover { background: #1d4ed8 !important; } | |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; } | |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; } | |
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;} | |
.answer-box p { color: #374151; line-height: 1.7; margin:0;} | |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; } | |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; } | |
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; } | |
.sources-container { margin-top: 0; } | |
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; } | |
.source-item:last-child { border-bottom: none; } | |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;} | |
.source-content { flex: 1; min-width: 0;} | |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;} | |
.source-title:hover { color: #1d4ed8; text-decoration: underline; } | |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; } | |
.chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; } | |
.chat-history > div { padding: 1rem; } | |
.chat-history::-webkit-scrollbar { width: 6px; } | |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; } | |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; } | |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; } | |
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; cursor: pointer;} | |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; } | |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; } | |
/* ... other markdown styles ... */ | |
.voice-selector { margin: 0; padding: 0; height: 100%; } | |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;} | |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; } | |
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;} | |
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;} | |
.audio-player audio { width: 100% !important; } | |
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; } | |
.searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; } | |
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; } | |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;} | |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } } | |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } | |
/* Dark Mode Styles (optional) */ | |
.dark .gradio-container { background-color: #111827 !important; } | |
/* ... other dark mode rules ... */ | |
""" | |
with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo: | |
chat_history_state = gr.State([]) | |
with gr.Column(): | |
with gr.Column(elem_id="header"): gr.Markdown("# π AI Search Assistant (ZeroGPU)\n### (UI blocks during processing)") | |
with gr.Column(elem_classes="search-container"): | |
with gr.Row(elem_classes="search-box"): | |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False) | |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector") | |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100) | |
with gr.Row(elem_classes="results-container"): | |
with gr.Column(scale=3): | |
chatbot_display = gr.Chatbot(label="Conversation", bubble_full_width=True, height=500, elem_classes="chat-history", type="messages", show_label=False, avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png")) | |
answer_status_output = gr.Markdown(value="*Enter query to start.*", elem_classes="answer-box markdown-content") # Shows final text | |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player") | |
with gr.Column(scale=2): | |
with gr.Column(elem_classes="sources-box"): gr.Markdown("### Sources"); sources_output_html = gr.HTML(value="<div class='no-sources'>Sources appear here.</div>") | |
with gr.Row(elem_classes="examples-container"): gr.Examples(examples=["Latest AI news", "Explain LLMs", "Flu symptoms/prevention", "Python vs JS", "Paris Agreement"], inputs=search_input, label="Try examples:") | |
event_inputs = [search_input, chat_history_state, voice_select] | |
event_outputs = [ chatbot_display, answer_status_output, sources_output_html, audio_player, search_btn ] | |
search_btn.click(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs) | |
search_input.submit(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs) | |
if __name__ == "__main__": | |
print("Starting Gradio application (Synchronous for ZeroGPU)...") | |
time.sleep(1) # Wait for TTS setup thread | |
demo.queue(max_size=20).launch(debug=True, share=True) | |
print("Gradio application stopped.") |