Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,130 +3,29 @@ import torch.nn as nn
|
|
3 |
from torch.nn import functional as F
|
4 |
import tiktoken
|
5 |
import gradio as gr
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
from torch.nn import functional as F
|
9 |
-
import tiktoken
|
10 |
-
import gradio as gr
|
11 |
-
import asyncio
|
12 |
-
import gradio as gr
|
13 |
import asyncio
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
processed_text = '. '.join(complete_sentences)
|
26 |
-
if not processed_text.endswith('.'):
|
27 |
-
processed_text += '.'
|
28 |
-
|
29 |
-
return processed_text
|
30 |
-
# Define the model architecture
|
31 |
-
class GPTConfig:
|
32 |
-
def __init__(self):
|
33 |
-
self.block_size = 1024
|
34 |
-
self.vocab_size = 50304
|
35 |
-
self.n_layer = 12
|
36 |
-
self.n_head = 12
|
37 |
-
self.n_embd = 768
|
38 |
-
|
39 |
-
class CausalSelfAttention(nn.Module):
|
40 |
-
def __init__(self, config):
|
41 |
-
super().__init__()
|
42 |
-
assert config.n_embd % config.n_head == 0
|
43 |
-
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
44 |
-
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
45 |
-
self.n_head = config.n_head
|
46 |
-
self.n_embd = config.n_embd
|
47 |
-
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
48 |
-
|
49 |
-
def forward(self, x):
|
50 |
-
B, T, C = x.size()
|
51 |
-
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
52 |
-
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
53 |
-
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
54 |
-
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
55 |
-
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
|
56 |
-
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
57 |
-
return self.c_proj(y)
|
58 |
-
|
59 |
-
class MLP(nn.Module):
|
60 |
-
def __init__(self, config):
|
61 |
-
super().__init__()
|
62 |
-
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
63 |
-
self.gelu = nn.GELU()
|
64 |
-
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
65 |
-
|
66 |
-
def forward(self, x):
|
67 |
-
return self.c_proj(self.gelu(self.c_fc(x)))
|
68 |
-
|
69 |
-
class Block(nn.Module):
|
70 |
-
def __init__(self, config):
|
71 |
-
super().__init__()
|
72 |
-
self.ln_1 = nn.LayerNorm(config.n_embd)
|
73 |
-
self.attn = CausalSelfAttention(config)
|
74 |
-
self.ln_2 = nn.LayerNorm(config.n_embd)
|
75 |
-
self.mlp = MLP(config)
|
76 |
|
77 |
-
|
78 |
-
x = x + self.attn(self.ln_1(x))
|
79 |
-
x = x + self.mlp(self.ln_2(x))
|
80 |
-
return x
|
81 |
-
|
82 |
-
class GPT(nn.Module):
|
83 |
-
def __init__(self, config):
|
84 |
-
super().__init__()
|
85 |
-
self.config = config
|
86 |
-
self.transformer = nn.ModuleDict(dict(
|
87 |
-
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
88 |
-
wpe = nn.Embedding(config.block_size, config.n_embd),
|
89 |
-
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
90 |
-
ln_f = nn.LayerNorm(config.n_embd),
|
91 |
-
))
|
92 |
-
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
93 |
-
self.transformer.wte.weight = self.lm_head.weight
|
94 |
-
self.apply(self._init_weights)
|
95 |
-
|
96 |
-
def _init_weights(self, module):
|
97 |
-
if isinstance(module, nn.Linear):
|
98 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
99 |
-
if module.bias is not None:
|
100 |
-
torch.nn.init.zeros_(module.bias)
|
101 |
-
elif isinstance(module, nn.Embedding):
|
102 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
103 |
-
|
104 |
-
def forward(self, idx, targets=None):
|
105 |
-
device = idx.device
|
106 |
-
b, t = idx.size()
|
107 |
-
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
108 |
-
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
|
109 |
-
|
110 |
-
tok_emb = self.transformer.wte(idx)
|
111 |
-
pos_emb = self.transformer.wpe(pos)
|
112 |
-
x = tok_emb + pos_emb
|
113 |
-
for block in self.transformer.h:
|
114 |
-
x = block(x)
|
115 |
-
x = self.transformer.ln_f(x)
|
116 |
-
logits = self.lm_head(x)
|
117 |
-
|
118 |
-
loss = None
|
119 |
-
if targets is not None:
|
120 |
-
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
121 |
-
|
122 |
-
return logits, loss
|
123 |
|
|
|
124 |
@spaces.GPU
|
125 |
def load_model(model_path):
|
126 |
config = GPTConfig()
|
127 |
model = GPT(config)
|
128 |
|
129 |
-
|
|
|
130 |
|
131 |
if 'model_state_dict' in checkpoint:
|
132 |
model.load_state_dict(checkpoint['model_state_dict'])
|
@@ -134,7 +33,7 @@ def load_model(model_path):
|
|
134 |
model.load_state_dict(checkpoint)
|
135 |
|
136 |
model.eval()
|
137 |
-
model.to(
|
138 |
return model
|
139 |
|
140 |
# Load the model
|
@@ -144,7 +43,8 @@ enc = tiktoken.get_encoding('gpt2')
|
|
144 |
# Update the generate_text function
|
145 |
@spaces.GPU(duration=60) # Adjust duration as needed
|
146 |
async def generate_text(prompt, max_length=432, temperature=0.8, top_k=40):
|
147 |
-
|
|
|
148 |
generated = []
|
149 |
|
150 |
with torch.no_grad():
|
@@ -179,125 +79,4 @@ async def gradio_generate(prompt, max_length, temperature, top_k):
|
|
179 |
output += token
|
180 |
yield output
|
181 |
|
182 |
-
#
|
183 |
-
import gradio as gr
|
184 |
-
import asyncio
|
185 |
-
|
186 |
-
# Your existing imports and model code here...
|
187 |
-
|
188 |
-
css = """
|
189 |
-
<style>
|
190 |
-
body {
|
191 |
-
background-color: #0f1624;
|
192 |
-
color: #e0e0e0;
|
193 |
-
font-family: 'Courier New', monospace;
|
194 |
-
background-image:
|
195 |
-
radial-gradient(white, rgba(255,255,255,.2) 2px, transparent 40px),
|
196 |
-
radial-gradient(white, rgba(255,255,255,.15) 1px, transparent 30px),
|
197 |
-
radial-gradient(white, rgba(255,255,255,.1) 2px, transparent 40px),
|
198 |
-
radial-gradient(rgba(255,255,255,.4), rgba(255,255,255,.1) 2px, transparent 30px);
|
199 |
-
background-size: 550px 550px, 350px 350px, 250px 250px, 150px 150px;
|
200 |
-
background-position: 0 0, 40px 60px, 130px 270px, 70px 100px;
|
201 |
-
animation: backgroundScroll 60s linear infinite;
|
202 |
-
}
|
203 |
-
@keyframes backgroundScroll {
|
204 |
-
0% { background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; }
|
205 |
-
100% { background-position: 550px 550px, 590px 610px, 680px 820px, 620px 650px; }
|
206 |
-
}
|
207 |
-
.container { max-width: 800px; margin: 0 auto; padding: 20px; }
|
208 |
-
.header {
|
209 |
-
text-align: center;
|
210 |
-
margin-bottom: 30px;
|
211 |
-
font-family: 'Copperplate', fantasy;
|
212 |
-
color: #ffd700;
|
213 |
-
text-shadow: 0 0 10px #ffd700, 0 0 20px #ffd700, 0 0 30px #ffd700;
|
214 |
-
}
|
215 |
-
.chat-box {
|
216 |
-
background-color: rgba(42, 42, 42, 0.7);
|
217 |
-
border-radius: 15px;
|
218 |
-
padding: 20px;
|
219 |
-
margin-bottom: 20px;
|
220 |
-
box-shadow: 0 0 20px rgba(255, 215, 0, 0.3);
|
221 |
-
}
|
222 |
-
.user-input {
|
223 |
-
background-color: rgba(58, 58, 58, 0.8);
|
224 |
-
border: 2px solid #ffd700;
|
225 |
-
color: #ffffff;
|
226 |
-
padding: 10px;
|
227 |
-
border-radius: 5px;
|
228 |
-
width: 100%;
|
229 |
-
transition: all 0.3s ease;
|
230 |
-
}
|
231 |
-
.user-input:focus {
|
232 |
-
box-shadow: 0 0 15px #ffd700;
|
233 |
-
}
|
234 |
-
.generate-btn {
|
235 |
-
background-color: #ffd700;
|
236 |
-
color: #0f1624;
|
237 |
-
border: none;
|
238 |
-
padding: 10px 20px;
|
239 |
-
border-radius: 5px;
|
240 |
-
cursor: pointer;
|
241 |
-
font-weight: bold;
|
242 |
-
transition: all 0.3s ease;
|
243 |
-
}
|
244 |
-
.generate-btn:hover {
|
245 |
-
background-color: #ffec8b;
|
246 |
-
transform: scale(1.05);
|
247 |
-
}
|
248 |
-
.output-box {
|
249 |
-
background-color: rgba(42, 42, 42, 0.7);
|
250 |
-
border-radius: 15px;
|
251 |
-
padding: 20px;
|
252 |
-
margin-top: 20px;
|
253 |
-
min-height: 100px;
|
254 |
-
border: 1px solid #ffd700;
|
255 |
-
white-space: pre-wrap;
|
256 |
-
font-family: 'Georgia', serif;
|
257 |
-
line-height: 1.6;
|
258 |
-
box-shadow: inset 0 0 10px rgba(255, 215, 0, 0.3);
|
259 |
-
}
|
260 |
-
.gr-slider {
|
261 |
-
--slider-color: #ffd700;
|
262 |
-
}
|
263 |
-
.gr-box {
|
264 |
-
border-color: #ffd700;
|
265 |
-
background-color: rgba(42, 42, 42, 0.7);
|
266 |
-
}
|
267 |
-
</style>
|
268 |
-
"""
|
269 |
-
|
270 |
-
with gr.Blocks(css=css) as demo:
|
271 |
-
gr.HTML("<div class='header'><h1>🌟 Enchanted Tales Generator 🌟</h1></div>")
|
272 |
-
|
273 |
-
with gr.Row():
|
274 |
-
with gr.Column(scale=3):
|
275 |
-
prompt = gr.Textbox(
|
276 |
-
placeholder="Begin your magical journey here (e.g., 'In a realm beyond the mists of time...')",
|
277 |
-
label="Story Incantation",
|
278 |
-
elem_classes="user-input"
|
279 |
-
)
|
280 |
-
with gr.Column(scale=1):
|
281 |
-
generate_btn = gr.Button("Weave the Tale", elem_classes="generate-btn")
|
282 |
-
|
283 |
-
with gr.Row():
|
284 |
-
max_length = gr.Slider(minimum=50, maximum=500, value=432, step=1, label="Scroll Length")
|
285 |
-
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Magical Intensity")
|
286 |
-
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Arcane Diversity")
|
287 |
-
|
288 |
-
output = gr.Markdown(elem_classes="output-box")
|
289 |
-
|
290 |
-
generate_btn.click(
|
291 |
-
gradio_generate,
|
292 |
-
inputs=[prompt, max_length, temperature, top_k],
|
293 |
-
outputs=output
|
294 |
-
)
|
295 |
-
|
296 |
-
gr.HTML("""
|
297 |
-
<div style="text-align: center; margin-top: 20px; font-style: italic; color: #ffd700;">
|
298 |
-
"In the realm of imagination, every word is a spell, every sentence a charm."
|
299 |
-
</div>
|
300 |
-
""")
|
301 |
-
|
302 |
-
if __name__ == "__main__":
|
303 |
-
demo.launch()
|
|
|
3 |
from torch.nn import functional as F
|
4 |
import tiktoken
|
5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import asyncio
|
7 |
|
8 |
+
# Try to import spaces, use a dummy decorator if not available
|
9 |
+
try:
|
10 |
+
import spaces
|
11 |
+
use_spaces_gpu = True
|
12 |
+
except ImportError:
|
13 |
+
use_spaces_gpu = False
|
14 |
+
# Dummy decorator in case spaces is not available
|
15 |
+
def dummy_gpu_decorator(func):
|
16 |
+
return func
|
17 |
+
spaces = type('', (), {'GPU': dummy_gpu_decorator})()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# ... (keep the model architecture classes as they are)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Update the load_model function
|
22 |
@spaces.GPU
|
23 |
def load_model(model_path):
|
24 |
config = GPTConfig()
|
25 |
model = GPT(config)
|
26 |
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
checkpoint = torch.load(model_path, map_location=device)
|
29 |
|
30 |
if 'model_state_dict' in checkpoint:
|
31 |
model.load_state_dict(checkpoint['model_state_dict'])
|
|
|
33 |
model.load_state_dict(checkpoint)
|
34 |
|
35 |
model.eval()
|
36 |
+
model.to(device)
|
37 |
return model
|
38 |
|
39 |
# Load the model
|
|
|
43 |
# Update the generate_text function
|
44 |
@spaces.GPU(duration=60) # Adjust duration as needed
|
45 |
async def generate_text(prompt, max_length=432, temperature=0.8, top_k=40):
|
46 |
+
device = next(model.parameters()).device
|
47 |
+
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0).to(device)
|
48 |
generated = []
|
49 |
|
50 |
with torch.no_grad():
|
|
|
79 |
output += token
|
80 |
yield output
|
81 |
|
82 |
+
# The rest of your Gradio interface code remains the same
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|