Spaces:
Running
Running
File size: 9,905 Bytes
8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 8e31ab1 2144e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModel
from PIL import Image
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
class LLaVAPhiModel:
def __init__(self, model_id="sagar007/Lava_phi"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device: {self.device}")
try:
# Load model with appropriate settings based on available hardware
logging.info(f"Loading model from {model_id}...")
# Determine model loading configuration
model_kwargs = {
"device_map": "auto",
"trust_remote_code": True
}
# Add quantization only if CUDA is available
if torch.cuda.is_available():
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
model_kwargs["quantization_config"] = quantization_config
model_kwargs["torch_dtype"] = torch.bfloat16
else:
# For CPU, use lighter configuration
model_kwargs["torch_dtype"] = torch.float32
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
**model_kwargs
)
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
# Set up padding token
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model.config.pad_token_id = self.tokenizer.eos_token_id
# Load CLIP model and processor
logging.info("Loading CLIP model and processor...")
self.processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.clip = AutoModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
# Store conversation history
self.history = []
except Exception as e:
logging.error(f"Error initializing model: {str(e)}")
raise
def process_image(self, image):
"""Process image through CLIP"""
try:
# Ensure image is in correct format
if isinstance(image, str): # If image path is provided
image = Image.open(image)
elif isinstance(image, numpy.ndarray): # If numpy array (from gradio)
image = Image.fromarray(image)
with torch.no_grad():
image_inputs = self.processor(images=image, return_tensors="pt")
image_features = self.clip.get_image_features(
pixel_values=image_inputs.pixel_values.to(self.device)
)
return image_features
except Exception as e:
logging.error(f"Error processing image: {str(e)}")
raise
def generate_response(self, message, image=None):
try:
if image is not None:
try:
# Get image features
image_features = self.process_image(image)
has_image = True
except Exception as e:
logging.error(f"Failed to process image: {str(e)}")
image_features = None
has_image = False
message = f"Note: Failed to process image. Continuing with text only. Error: {str(e)}\n{message}"
# Format prompt
prompt = f"human: {'<image>' if has_image else ''}\n{message}\ngpt:"
# Add context from history
context = ""
for turn in self.history[-3:]:
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
full_prompt = context + prompt
# Prepare text inputs
inputs = self.tokenizer(
full_prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Add image features to inputs if available
if has_image:
inputs["image_features"] = image_features
# Generate response
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=256,
min_length=20,
temperature=0.7,
do_sample=True,
top_p=0.9,
top_k=40,
repetition_penalty=1.5,
no_repeat_ngram_size=3,
use_cache=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
else:
# Text-only response
prompt = f"human: {message}\ngpt:"
context = ""
for turn in self.history[-3:]:
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
full_prompt = context + prompt
inputs = self.tokenizer(
full_prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=150,
min_length=20,
temperature=0.6,
do_sample=True,
top_p=0.85,
top_k=30,
repetition_penalty=1.8,
no_repeat_ngram_size=4,
use_cache=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
# Decode response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean up response
if "gpt:" in response:
response = response.split("gpt:")[-1].strip()
if "human:" in response:
response = response.split("human:")[0].strip()
if "<image>" in response:
response = response.replace("<image>", "").strip()
# Update history
self.history.append((message, response))
return response
except Exception as e:
logging.error(f"Error generating response: {str(e)}")
logging.error(f"Full traceback:", exc_info=True)
return f"Error: {str(e)}"
def clear_history(self):
self.history = []
return None
def create_demo():
try:
# Initialize model
model = LLaVAPhiModel()
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown(
"""
# LLaVA-Phi Demo
Chat with a vision-language model that can understand both text and images.
"""
)
chatbot = gr.Chatbot(height=400)
with gr.Row():
with gr.Column(scale=0.7):
msg = gr.Textbox(
show_label=False,
placeholder="Enter text and/or upload an image",
container=False
)
with gr.Column(scale=0.15, min_width=0):
clear = gr.Button("Clear")
with gr.Column(scale=0.15, min_width=0):
submit = gr.Button("Submit", variant="primary")
image = gr.Image(type="pil", label="Upload Image (Optional)")
def respond(message, chat_history, image):
if not message and image is None:
return chat_history
response = model.generate_response(message, image)
chat_history.append((message, response))
return "", chat_history
def clear_chat():
model.clear_history()
return None, None
submit.click(
respond,
[msg, chatbot, image],
[msg, chatbot],
)
clear.click(
clear_chat,
None,
[chatbot, image],
)
msg.submit(
respond,
[msg, chatbot, image],
[msg, chatbot],
)
return demo
except Exception as e:
logging.error(f"Error creating demo: {str(e)}")
raise
if __name__ == "__main__":
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |