File size: 8,206 Bytes
8e31ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoConfig, AutoModel
from PIL import Image
import logging
from transformers import BitsAndBytesConfig

# Setup logging
logging.basicConfig(level=logging.INFO)

class LLaVAPhiModel:
    def __init__(self, model_id="sagar007/Lava_phi"):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        logging.info(f"Using device: {self.device}")
        
        # Initialize quantization config
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4"
        )
        
        try:
            # Load model directly from Hugging Face Hub
            logging.info(f"Loading model from {model_id}...")
            self.model = AutoModelForCausalLM.from_pretrained(
                model_id,
                quantization_config=quantization_config,
                device_map="auto",
                torch_dtype=torch.bfloat16,
                trust_remote_code=True
            )
            self.tokenizer = AutoTokenizer.from_pretrained(model_id)
            
            # Set up padding token
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
                self.model.config.pad_token_id = self.tokenizer.eos_token_id
                
            # Load CLIP model and processor
            logging.info("Loading CLIP model and processor...")
            self.processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
            self.clip = AutoModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
            
            # Store conversation history
            self.history = []
            
        except Exception as e:
            logging.error(f"Error initializing model: {str(e)}")
            raise
        
    def process_image(self, image):
        """Process image through CLIP"""
        with torch.no_grad():
            image_inputs = self.processor(images=image, return_tensors="pt")
            image_features = self.clip.get_image_features(
                pixel_values=image_inputs.pixel_values.to(self.device)
            )
            return image_features
        
    def generate_response(self, message, image=None):
        try:
            if image is not None:
                # Get image features
                image_features = self.process_image(image)
                
                # Format prompt
                prompt = f"human: <image>\n{message}\ngpt:"
                
                # Add context from history
                context = ""
                for turn in self.history[-3:]:
                    context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
                
                full_prompt = context + prompt
                
                # Prepare text inputs
                inputs = self.tokenizer(
                    full_prompt, 
                    return_tensors="pt", 
                    padding=True,
                    truncation=True,
                    max_length=512
                )
                inputs = {k: v.to(self.device) for k, v in inputs.items()}
                
                # Add image features to inputs
                inputs["image_features"] = image_features
                
                # Generate response
                with torch.no_grad():
                    outputs = self.model.generate(
                        **inputs,
                        max_new_tokens=256,
                        min_length=20,
                        temperature=0.7,
                        do_sample=True,
                        top_p=0.9,
                        top_k=40,
                        repetition_penalty=1.5,
                        no_repeat_ngram_size=3,
                        use_cache=True,
                        pad_token_id=self.tokenizer.pad_token_id,
                        eos_token_id=self.tokenizer.eos_token_id
                    )
            else:
                # Text-only response
                prompt = f"human: {message}\ngpt:"
                context = ""
                for turn in self.history[-3:]:
                    context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
                
                full_prompt = context + prompt
                inputs = self.tokenizer(
                    full_prompt,
                    return_tensors="pt",
                    padding=True,
                    truncation=True,
                    max_length=512
                )
                inputs = {k: v.to(self.device) for k, v in inputs.items()}
                
                with torch.no_grad():
                    outputs = self.model.generate(
                        **inputs,
                        max_new_tokens=150,
                        min_length=20,
                        temperature=0.6,
                        do_sample=True,
                        top_p=0.85,
                        top_k=30,
                        repetition_penalty=1.8,
                        no_repeat_ngram_size=4,
                        use_cache=True,
                        pad_token_id=self.tokenizer.pad_token_id,
                        eos_token_id=self.tokenizer.eos_token_id
                    )
            
            # Decode response
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Clean up response
            if "gpt:" in response:
                response = response.split("gpt:")[-1].strip()
            if "human:" in response:
                response = response.split("human:")[0].strip()
            if "<image>" in response:
                response = response.replace("<image>", "").strip()
            
            # Update history
            self.history.append((message, response))
            
            return response
            
        except Exception as e:
            logging.error(f"Error generating response: {str(e)}")
            logging.error(f"Full traceback:", exc_info=True)
            return f"Error: {str(e)}"
    
    def clear_history(self):
        self.history = []
        return None

def create_demo():
    # Initialize model
    model = LLaVAPhiModel()
    
    with gr.Blocks(css="footer {visibility: hidden}") as demo:
        gr.Markdown(
            """
            # LLaVA-Phi Demo
            Chat with a vision-language model that can understand both text and images.
            """
        )
        
        chatbot = gr.Chatbot(height=400)
        with gr.Row():
            with gr.Column(scale=0.7):
                msg = gr.Textbox(
                    show_label=False,
                    placeholder="Enter text and/or upload an image",
                    container=False
                )
            with gr.Column(scale=0.15, min_width=0):
                clear = gr.Button("Clear")
            with gr.Column(scale=0.15, min_width=0):
                submit = gr.Button("Submit", variant="primary")
        
        image = gr.Image(type="pil", label="Upload Image (Optional)")
        
        def respond(message, chat_history, image):
            if not message and image is None:
                return chat_history
            
            response = model.generate_response(message, image)
            chat_history.append((message, response))
            return "", chat_history
        
        def clear_chat():
            model.clear_history()
            return None, None
        
        submit.click(
            respond,
            [msg, chatbot, image],
            [msg, chatbot],
        )
        
        clear.click(
            clear_chat,
            None,
            [chatbot, image],
        )
        
        msg.submit(
            respond,
            [msg, chatbot, image],
            [msg, chatbot],
        )
        
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )