Lava_phi_model / app.py
sagar007's picture
Update app.py
94ee0c6 verified
raw
history blame
10.2 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPProcessor, CLIPModel
from PIL import Image
import logging
import spaces
import numpy
# Setup logging
logging.basicConfig(level=logging.INFO)
class LLaVAPhiModel:
def __init__(self, model_id="sagar007/Lava_phi"):
self.device = "cuda"
self.model_id = model_id
logging.info("Initializing LLaVA-Phi model...")
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
try:
# Use CLIPProcessor directly instead of AutoProcessor
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
logging.info("Successfully loaded CLIP processor")
except Exception as e:
logging.error(f"Failed to load CLIP processor: {str(e)}")
self.processor = None
self.history = []
self.model = None
self.clip = None
@spaces.GPU
def ensure_models_loaded(self):
"""Ensure models are loaded in GPU context"""
if self.model is None:
# Load main model with updated quantization config
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
try:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=quantization_config,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
self.model.config.pad_token_id = self.tokenizer.eos_token_id
logging.info("Successfully loaded main model")
except Exception as e:
logging.error(f"Failed to load main model: {str(e)}")
raise
if self.clip is None:
try:
# Use CLIPModel directly instead of AutoModel
self.clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
logging.info("Successfully loaded CLIP model")
except Exception as e:
logging.error(f"Failed to load CLIP model: {str(e)}")
self.clip = None
@spaces.GPU
def process_image(self, image):
"""Process image through CLIP if available"""
try:
self.ensure_models_loaded()
if self.clip is None or self.processor is None:
logging.warning("CLIP model or processor not available")
return None
# Convert image to correct format
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, numpy.ndarray):
image = Image.fromarray(image)
# Ensure image is in RGB mode
if image.mode != 'RGB':
image = image.convert('RGB')
with torch.no_grad():
try:
# Process image with error handling
image_inputs = self.processor(images=image, return_tensors="pt")
image_features = self.clip.get_image_features(
pixel_values=image_inputs.pixel_values.to(self.device)
)
logging.info("Successfully processed image through CLIP")
return image_features
except Exception as e:
logging.error(f"Error during image processing: {str(e)}")
return None
except Exception as e:
logging.error(f"Error in process_image: {str(e)}")
return None
@spaces.GPU(duration=120)
def generate_response(self, message, image=None):
try:
self.ensure_models_loaded()
if image is not None:
image_features = self.process_image(image)
has_image = image_features is not None
if not has_image:
message = "Note: Image processing is not available - continuing with text only.\n" + message
prompt = f"human: {'<image>' if has_image else ''}\n{message}\ngpt:"
context = ""
for turn in self.history[-3:]:
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
full_prompt = context + prompt
inputs = self.tokenizer(
full_prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
if has_image:
inputs["image_features"] = image_features
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=256,
min_length=20,
temperature=0.7,
do_sample=True,
top_p=0.9,
top_k=40,
repetition_penalty=1.5,
no_repeat_ngram_size=3,
use_cache=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
else:
prompt = f"human: {message}\ngpt:"
context = ""
for turn in self.history[-3:]:
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
full_prompt = context + prompt
inputs = self.tokenizer(
full_prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=150,
min_length=20,
temperature=0.6,
do_sample=True,
top_p=0.85,
top_k=30,
repetition_penalty=1.8,
no_repeat_ngram_size=4,
use_cache=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean up response
if "gpt:" in response:
response = response.split("gpt:")[-1].strip()
if "human:" in response:
response = response.split("human:")[0].strip()
if "<image>" in response:
response = response.replace("<image>", "").strip()
self.history.append((message, response))
return response
except Exception as e:
logging.error(f"Error generating response: {str(e)}")
logging.error(f"Full traceback:", exc_info=True)
return f"Error: {str(e)}"
def clear_history(self):
self.history = []
return None
def create_demo():
try:
model = LLaVAPhiModel()
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown(
"""
# LLaVA-Phi Demo (ZeroGPU)
Chat with a vision-language model that can understand both text and images.
"""
)
chatbot = gr.Chatbot(height=400)
with gr.Row():
with gr.Column(scale=0.7):
msg = gr.Textbox(
show_label=False,
placeholder="Enter text and/or upload an image",
container=False
)
with gr.Column(scale=0.15, min_width=0):
clear = gr.Button("Clear")
with gr.Column(scale=0.15, min_width=0):
submit = gr.Button("Submit", variant="primary")
image = gr.Image(type="pil", label="Upload Image (Optional)")
def respond(message, chat_history, image):
if not message and image is None:
return chat_history
response = model.generate_response(message, image)
chat_history.append((message, response))
return "", chat_history
def clear_chat():
model.clear_history()
return None, None
submit.click(
respond,
[msg, chatbot, image],
[msg, chatbot],
)
clear.click(
clear_chat,
None,
[chatbot, image],
)
msg.submit(
respond,
[msg, chatbot, image],
[msg, chatbot],
)
return demo
except Exception as e:
logging.error(f"Error creating demo: {str(e)}")
raise
if __name__ == "__main__":
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)