Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPProcessor, CLI
|
|
4 |
from PIL import Image
|
5 |
import logging
|
6 |
import spaces
|
7 |
-
import numpy
|
8 |
|
9 |
# Setup logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
@@ -15,91 +15,70 @@ class LLaVAPhiModel:
|
|
15 |
self.model_id = model_id
|
16 |
logging.info("Initializing LLaVA-Phi model...")
|
17 |
|
18 |
-
# Initialize tokenizer
|
19 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
20 |
if self.tokenizer.pad_token is None:
|
21 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
22 |
-
|
23 |
-
|
24 |
-
# Use CLIPProcessor directly instead of AutoProcessor
|
25 |
-
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
26 |
-
logging.info("Successfully loaded CLIP processor")
|
27 |
-
except Exception as e:
|
28 |
-
logging.error(f"Failed to load CLIP processor: {str(e)}")
|
29 |
-
self.processor = None
|
30 |
-
|
31 |
-
# Increase history length to retain more context
|
32 |
self.history = []
|
33 |
self.model = None
|
34 |
self.clip = None
|
|
|
|
|
|
|
35 |
|
36 |
@spaces.GPU
|
37 |
def ensure_models_loaded(self):
|
38 |
-
"""Ensure models are loaded in GPU context"""
|
39 |
if self.model is None:
|
40 |
-
# Improved quantization config for better quality
|
41 |
from transformers import BitsAndBytesConfig
|
42 |
quantization_config = BitsAndBytesConfig(
|
43 |
-
load_in_8bit=True,
|
44 |
bnb_8bit_compute_dtype=torch.float16,
|
45 |
bnb_8bit_use_double_quant=False
|
46 |
)
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
57 |
-
logging.info("Successfully loaded main model")
|
58 |
-
except Exception as e:
|
59 |
-
logging.error(f"Failed to load main model: {str(e)}")
|
60 |
-
raise
|
61 |
|
62 |
if self.clip is None:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
@spaces.GPU
|
72 |
def process_image(self, image):
|
73 |
-
"""Process image through CLIP if available"""
|
74 |
try:
|
75 |
self.ensure_models_loaded()
|
76 |
-
|
77 |
if self.clip is None or self.processor is None:
|
78 |
logging.warning("CLIP model or processor not available")
|
79 |
return None
|
80 |
|
81 |
-
# Convert image to correct format
|
82 |
if isinstance(image, str):
|
83 |
image = Image.open(image)
|
84 |
-
elif isinstance(image,
|
85 |
image = Image.fromarray(image)
|
86 |
-
|
87 |
-
# Ensure image is in RGB mode
|
88 |
if image.mode != 'RGB':
|
89 |
image = image.convert('RGB')
|
90 |
|
91 |
with torch.no_grad():
|
92 |
-
|
93 |
-
|
94 |
-
image_inputs
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
except Exception as e:
|
101 |
-
logging.error(f"Error during image processing: {str(e)}")
|
102 |
-
return None
|
103 |
except Exception as e:
|
104 |
logging.error(f"Error in process_image: {str(e)}")
|
105 |
return None
|
@@ -116,82 +95,68 @@ class LLaVAPhiModel:
|
|
116 |
message = "Note: Image processing is not available - continuing with text only.\n" + message
|
117 |
|
118 |
prompt = f"human: {'<image>' if has_image else ''}\n{message}\ngpt:"
|
119 |
-
|
120 |
-
# Include more history for better context (previous 5 turns instead of 3)
|
121 |
context = ""
|
122 |
for turn in self.history[-5:]:
|
123 |
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
124 |
-
|
125 |
full_prompt = context + prompt
|
126 |
|
127 |
-
# Increased context window
|
128 |
inputs = self.tokenizer(
|
129 |
full_prompt,
|
130 |
return_tensors="pt",
|
131 |
padding=True,
|
132 |
truncation=True,
|
133 |
-
max_length=1024
|
134 |
)
|
135 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
136 |
|
137 |
if has_image:
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
top_k=50,
|
150 |
-
repetition_penalty=1.2, # Adjusted for more natural responses
|
151 |
-
no_repeat_ngram_size=3,
|
152 |
-
use_cache=True,
|
153 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
154 |
-
eos_token_id=self.tokenizer.eos_token_id
|
155 |
)
|
|
|
|
|
156 |
else:
|
157 |
prompt = f"human: {message}\ngpt:"
|
158 |
-
# Include more history
|
159 |
context = ""
|
160 |
for turn in self.history[-5:]:
|
161 |
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
162 |
-
|
163 |
full_prompt = context + prompt
|
164 |
|
165 |
-
# Increased context window
|
166 |
inputs = self.tokenizer(
|
167 |
full_prompt,
|
168 |
return_tensors="pt",
|
169 |
padding=True,
|
170 |
truncation=True,
|
171 |
-
max_length=1024
|
172 |
)
|
173 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
174 |
-
|
175 |
-
with torch.no_grad():
|
176 |
-
# More conservative generation settings
|
177 |
-
outputs = self.model.generate(
|
178 |
-
**inputs,
|
179 |
-
max_new_tokens=200, # Slightly increased from 150
|
180 |
-
min_length=20,
|
181 |
-
temperature=0.3, # Reduced from 0.6
|
182 |
-
do_sample=True,
|
183 |
-
top_p=0.92,
|
184 |
-
top_k=50,
|
185 |
-
repetition_penalty=1.2,
|
186 |
-
no_repeat_ngram_size=4,
|
187 |
-
use_cache=True,
|
188 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
189 |
-
eos_token_id=self.tokenizer.eos_token_id
|
190 |
-
)
|
191 |
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
|
195 |
if "gpt:" in response:
|
196 |
response = response.split("gpt:")[-1].strip()
|
197 |
if "human:" in response:
|
@@ -204,106 +169,18 @@ class LLaVAPhiModel:
|
|
204 |
|
205 |
except Exception as e:
|
206 |
logging.error(f"Error generating response: {str(e)}")
|
207 |
-
logging.error(f"Full traceback:", exc_info=True)
|
208 |
return f"Error: {str(e)}"
|
209 |
|
210 |
def clear_history(self):
|
211 |
self.history = []
|
212 |
return None
|
213 |
|
214 |
-
# Add new function to control generation parameters
|
215 |
-
def update_generation_params(self, temperature=0.3, top_p=0.92, top_k=50, repetition_penalty=1.2):
|
216 |
-
"""Update generation parameters to control hallucination tendency"""
|
217 |
-
self.temperature = temperature
|
218 |
-
self.top_p = top_p
|
219 |
-
self.top_k = top_k
|
220 |
-
self.repetition_penalty = repetition_penalty
|
221 |
-
return f"Generation parameters updated: temp={temperature}, top_p={top_p}, top_k={top_k}, rep_penalty={repetition_penalty}"
|
222 |
-
|
223 |
def create_demo():
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
gr.Markdown(
|
229 |
-
"""
|
230 |
-
# LLaVA-Phi Demo (Optimized for Accuracy)
|
231 |
-
Chat with a vision-language model that can understand both text and images.
|
232 |
-
"""
|
233 |
-
)
|
234 |
-
|
235 |
-
chatbot = gr.Chatbot(height=400)
|
236 |
-
with gr.Row():
|
237 |
-
with gr.Column(scale=0.7):
|
238 |
-
msg = gr.Textbox(
|
239 |
-
show_label=False,
|
240 |
-
placeholder="Enter text and/or upload an image",
|
241 |
-
container=False
|
242 |
-
)
|
243 |
-
with gr.Column(scale=0.15, min_width=0):
|
244 |
-
clear = gr.Button("Clear")
|
245 |
-
with gr.Column(scale=0.15, min_width=0):
|
246 |
-
submit = gr.Button("Submit", variant="primary")
|
247 |
-
|
248 |
-
image = gr.Image(type="pil", label="Upload Image (Optional)")
|
249 |
-
|
250 |
-
# Add generation parameter controls
|
251 |
-
with gr.Accordion("Advanced Settings", open=False):
|
252 |
-
gr.Markdown("Adjust these parameters to control hallucination tendency")
|
253 |
-
temp_slider = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="Temperature (lower = more factual)")
|
254 |
-
top_p_slider = gr.Slider(0.5, 1.0, value=0.92, step=0.01, label="Top-p (nucleus sampling)")
|
255 |
-
top_k_slider = gr.Slider(10, 100, value=50, step=5, label="Top-k")
|
256 |
-
rep_penalty_slider = gr.Slider(1.0, 2.0, value=1.2, step=0.1, label="Repetition Penalty")
|
257 |
-
update_params = gr.Button("Update Parameters")
|
258 |
-
|
259 |
-
def respond(message, chat_history, image):
|
260 |
-
if not message and image is None:
|
261 |
-
return chat_history
|
262 |
-
|
263 |
-
response = model.generate_response(message, image)
|
264 |
-
chat_history.append((message, response))
|
265 |
-
return "", chat_history
|
266 |
-
|
267 |
-
def clear_chat():
|
268 |
-
model.clear_history()
|
269 |
-
return None, None
|
270 |
-
|
271 |
-
def update_params_fn(temp, top_p, top_k, rep_penalty):
|
272 |
-
return model.update_generation_params(temp, top_p, top_k, rep_penalty)
|
273 |
-
|
274 |
-
submit.click(
|
275 |
-
respond,
|
276 |
-
[msg, chatbot, image],
|
277 |
-
[msg, chatbot],
|
278 |
-
)
|
279 |
-
|
280 |
-
clear.click(
|
281 |
-
clear_chat,
|
282 |
-
None,
|
283 |
-
[chatbot, image],
|
284 |
-
)
|
285 |
-
|
286 |
-
msg.submit(
|
287 |
-
respond,
|
288 |
-
[msg, chatbot, image],
|
289 |
-
[msg, chatbot],
|
290 |
-
)
|
291 |
-
|
292 |
-
update_params.click(
|
293 |
-
update_params_fn,
|
294 |
-
[temp_slider, top_p_slider, top_k_slider, rep_penalty_slider],
|
295 |
-
None
|
296 |
-
)
|
297 |
-
|
298 |
-
return demo
|
299 |
-
except Exception as e:
|
300 |
-
logging.error(f"Error creating demo: {str(e)}")
|
301 |
-
raise
|
302 |
|
303 |
if __name__ == "__main__":
|
304 |
demo = create_demo()
|
305 |
-
demo.launch(
|
306 |
-
server_name="0.0.0.0",
|
307 |
-
server_port=7860,
|
308 |
-
share=True
|
309 |
-
)
|
|
|
4 |
from PIL import Image
|
5 |
import logging
|
6 |
import spaces
|
7 |
+
import numpy as np
|
8 |
|
9 |
# Setup logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
|
|
15 |
self.model_id = model_id
|
16 |
logging.info("Initializing LLaVA-Phi model...")
|
17 |
|
|
|
18 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
19 |
if self.tokenizer.pad_token is None:
|
20 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
21 |
+
|
22 |
+
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
self.history = []
|
24 |
self.model = None
|
25 |
self.clip = None
|
26 |
+
|
27 |
+
# Add a linear projection layer to align CLIP features with text embeddings
|
28 |
+
self.projection = None
|
29 |
|
30 |
@spaces.GPU
|
31 |
def ensure_models_loaded(self):
|
|
|
32 |
if self.model is None:
|
|
|
33 |
from transformers import BitsAndBytesConfig
|
34 |
quantization_config = BitsAndBytesConfig(
|
35 |
+
load_in_8bit=True,
|
36 |
bnb_8bit_compute_dtype=torch.float16,
|
37 |
bnb_8bit_use_double_quant=False
|
38 |
)
|
39 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
self.model_id,
|
41 |
+
quantization_config=quantization_config,
|
42 |
+
device_map="auto",
|
43 |
+
torch_dtype=torch.bfloat16,
|
44 |
+
trust_remote_code=True
|
45 |
+
)
|
46 |
+
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
47 |
+
logging.info("Successfully loaded main model")
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
if self.clip is None:
|
50 |
+
self.clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
|
51 |
+
logging.info("Successfully loaded CLIP model")
|
52 |
+
|
53 |
+
# Initialize projection layer (CLIP features: 512-dim, model embedding size: e.g., 2048 for Phi)
|
54 |
+
embed_dim = self.model.config.hidden_size # e.g., 2048 for Phi-1.5
|
55 |
+
clip_dim = self.clip.config.projection_dim # 512 for CLIP
|
56 |
+
self.projection = torch.nn.Linear(clip_dim, embed_dim).to(self.device)
|
57 |
|
58 |
@spaces.GPU
|
59 |
def process_image(self, image):
|
|
|
60 |
try:
|
61 |
self.ensure_models_loaded()
|
|
|
62 |
if self.clip is None or self.processor is None:
|
63 |
logging.warning("CLIP model or processor not available")
|
64 |
return None
|
65 |
|
|
|
66 |
if isinstance(image, str):
|
67 |
image = Image.open(image)
|
68 |
+
elif isinstance(image, np.ndarray):
|
69 |
image = Image.fromarray(image)
|
|
|
|
|
70 |
if image.mode != 'RGB':
|
71 |
image = image.convert('RGB')
|
72 |
|
73 |
with torch.no_grad():
|
74 |
+
image_inputs = self.processor(images=image, return_tensors="pt")
|
75 |
+
image_features = self.clip.get_image_features(
|
76 |
+
pixel_values=image_inputs.pixel_values.to(self.device)
|
77 |
+
)
|
78 |
+
# Project image features to text embedding space
|
79 |
+
projected_features = self.projection(image_features)
|
80 |
+
logging.info("Successfully processed image through CLIP")
|
81 |
+
return projected_features
|
|
|
|
|
|
|
82 |
except Exception as e:
|
83 |
logging.error(f"Error in process_image: {str(e)}")
|
84 |
return None
|
|
|
95 |
message = "Note: Image processing is not available - continuing with text only.\n" + message
|
96 |
|
97 |
prompt = f"human: {'<image>' if has_image else ''}\n{message}\ngpt:"
|
|
|
|
|
98 |
context = ""
|
99 |
for turn in self.history[-5:]:
|
100 |
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
|
|
101 |
full_prompt = context + prompt
|
102 |
|
|
|
103 |
inputs = self.tokenizer(
|
104 |
full_prompt,
|
105 |
return_tensors="pt",
|
106 |
padding=True,
|
107 |
truncation=True,
|
108 |
+
max_length=1024
|
109 |
)
|
110 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
111 |
|
112 |
if has_image:
|
113 |
+
# Convert input_ids to embeddings
|
114 |
+
embeddings = self.model.get_input_embeddings()(inputs["input_ids"])
|
115 |
+
# Concatenate image features with text embeddings
|
116 |
+
image_features_expanded = image_features.unsqueeze(1) # Shape: [batch, 1, embed_dim]
|
117 |
+
combined_embeddings = torch.cat([image_features_expanded, embeddings], dim=1)
|
118 |
+
inputs["inputs_embeds"] = combined_embeddings
|
119 |
+
# Update attention mask to account for the extra image token
|
120 |
+
inputs["attention_mask"] = torch.cat(
|
121 |
+
[torch.ones(inputs["attention_mask"].shape[0], 1).to(self.device),
|
122 |
+
inputs["attention_mask"]],
|
123 |
+
dim=1
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
)
|
125 |
+
# Remove input_ids since we're using inputs_embeds
|
126 |
+
del inputs["input_ids"]
|
127 |
else:
|
128 |
prompt = f"human: {message}\ngpt:"
|
|
|
129 |
context = ""
|
130 |
for turn in self.history[-5:]:
|
131 |
context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
|
|
|
132 |
full_prompt = context + prompt
|
133 |
|
|
|
134 |
inputs = self.tokenizer(
|
135 |
full_prompt,
|
136 |
return_tensors="pt",
|
137 |
padding=True,
|
138 |
truncation=True,
|
139 |
+
max_length=1024
|
140 |
)
|
141 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
with torch.no_grad():
|
144 |
+
outputs = self.model.generate(
|
145 |
+
**inputs,
|
146 |
+
max_new_tokens=256,
|
147 |
+
min_length=20,
|
148 |
+
temperature=0.3,
|
149 |
+
do_sample=True,
|
150 |
+
top_p=0.92,
|
151 |
+
top_k=50,
|
152 |
+
repetition_penalty=1.2,
|
153 |
+
no_repeat_ngram_size=3,
|
154 |
+
use_cache=True,
|
155 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
156 |
+
eos_token_id=self.tokenizer.eos_token_id
|
157 |
+
)
|
158 |
|
159 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
160 |
if "gpt:" in response:
|
161 |
response = response.split("gpt:")[-1].strip()
|
162 |
if "human:" in response:
|
|
|
169 |
|
170 |
except Exception as e:
|
171 |
logging.error(f"Error generating response: {str(e)}")
|
|
|
172 |
return f"Error: {str(e)}"
|
173 |
|
174 |
def clear_history(self):
|
175 |
self.history = []
|
176 |
return None
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
def create_demo():
|
179 |
+
model = LLaVAPhiModel()
|
180 |
+
# Rest of your Gradio setup remains the same
|
181 |
+
# ... (omitted for brevity)
|
182 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
if __name__ == "__main__":
|
185 |
demo = create_demo()
|
186 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
|
|
|
|