Spaces:
Running
on
Zero
Running
on
Zero
# Import spaces first to avoid CUDA initialization issues | |
import spaces | |
# Then import other libraries | |
import torch | |
import librosa | |
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor | |
from gtts import gTTS | |
import gradio as gr | |
from PIL import Image | |
import os | |
import base64 | |
from io import BytesIO | |
import io | |
import subprocess | |
from langdetect import detect | |
print("Using GPU for operations when available") | |
# Install flash-attn | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Function to safely load pipeline within a GPU-decorated function | |
def load_pipeline(model_name, **kwargs): | |
try: | |
device = 0 if torch.cuda.is_available() else "cpu" | |
return pipeline(model=model_name, device=device, **kwargs) | |
except Exception as e: | |
print(f"Error loading {model_name} pipeline: {e}") | |
return None | |
# Load Whisper model for speech recognition within a GPU-decorated function | |
def load_whisper(): | |
try: | |
device = 0 if torch.cuda.is_available() else "cpu" | |
processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device) | |
return processor, model | |
except Exception as e: | |
print(f"Error loading Whisper model: {e}") | |
return None, None | |
# Load sarvam-2b for text generation within a GPU-decorated function | |
def load_sarvam(): | |
return load_pipeline('sarvamai/sarvam-2b-v0.5') | |
# Load Phi-3.5-vision-instruct model | |
def load_vision_model(): | |
try: | |
model_id = "microsoft/Phi-3.5-vision-instruct" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, trust_remote_code=True, torch_dtype=torch.float16, use_flash_attention_2=False | |
) | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16) | |
return model, processor | |
except Exception as e: | |
print(f"Error loading vision model: {e}") | |
return None, None | |
# Load sarvam-2b for text generation within a GPU-decorated function | |
def load_sarvam(): | |
return load_pipeline('sarvamai/sarvam-2b-v0.5') | |
# Load Phi-3.5-vision-instruct model | |
def load_vision_model(): | |
try: | |
print("Starting to load vision model...") | |
model_id = "microsoft/Phi-3.5-vision-instruct" | |
print(f"Loading model from {model_id}") | |
# Check for CUDA availability | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Load model with potential memory optimization | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
use_flash_attention_2=True, # Enable if supported | |
device_map="auto", # Automatically manage model placement | |
low_cpu_mem_usage=True | |
) | |
print("Model loaded successfully") | |
print("Loading processor...") | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16) | |
print("Processor loaded successfully") | |
return model, processor | |
except ImportError as e: | |
print(f"Error importing required modules: {str(e)}") | |
print("Please ensure all required dependencies are installed.") | |
except RuntimeError as e: | |
print(f"Runtime error (possibly CUDA out of memory): {str(e)}") | |
print("Consider using a smaller model or enabling GPU offloading.") | |
except Exception as e: | |
print(f"Unexpected error in loading vision model: {str(e)}") | |
return None, None | |
# Process audio input within a GPU-decorated function | |
def process_audio_input(audio, whisper_processor, whisper_model): | |
if whisper_processor is None or whisper_model is None: | |
return "Error: Speech recognition model is not available. Please type your message instead." | |
try: | |
audio, sr = librosa.load(audio, sr=16000) | |
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device) | |
predicted_ids = whisper_model.generate(input_features) | |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
return transcription | |
except Exception as e: | |
return f"Error processing audio: {str(e)}. Please type your message instead." | |
# Updated process_image_input function | |
def process_image_input(image, text_prompt, vision_model, processor): | |
if vision_model is None or processor is None: | |
return "Error: Vision model is not available." | |
try: | |
# Convert image to base64 | |
if isinstance(image, Image.Image): | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
else: | |
# If it's not a PIL Image, assume it's a file path | |
with open(image, "rb") as image_file: | |
img_str = base64.b64encode(image_file.read()).decode() | |
# Format the input with image tag | |
formatted_prompt = f"{text_prompt}\n<image>data:image/png;base64,{img_str}</image>" | |
# Process the formatted prompt | |
inputs = processor(text=formatted_prompt, return_tensors="pt").to(vision_model.device) | |
# Generate text | |
with torch.no_grad(): | |
outputs = vision_model.generate( | |
**inputs, | |
max_new_tokens=100, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
num_return_sequences=1 | |
) | |
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
return generated_text | |
except Exception as e: | |
return f"Error processing image: {str(e)}" | |
# Generate response within a GPU-decorated function | |
def generate_response(transcription, sarvam_pipe): | |
if sarvam_pipe is None: | |
return "Error: Text generation model is not available." | |
try: | |
# Generate response using the sarvam-2b model | |
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text'] | |
return response | |
except Exception as e: | |
return f"Error generating response: {str(e)}" | |
# Text-to-speech function | |
def text_to_speech(text, lang='hi'): | |
try: | |
# Use a better TTS engine for Indic languages | |
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']: | |
# You might want to use a different TTS library here | |
# For example, you could use the Google Cloud Text-to-Speech API | |
# or a specialized Indic language TTS library | |
# This is a placeholder for a better Indic TTS solution | |
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD | |
else: | |
tts = gTTS(text=text, lang=lang) | |
tts.save("response.mp3") | |
return "response.mp3" | |
except Exception as e: | |
print(f"Error in text-to-speech: {str(e)}") | |
return None | |
# Improved language detection function | |
def detect_language(text): | |
lang_codes = { | |
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada', | |
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi', | |
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English' | |
} | |
try: | |
detected_lang = detect(text) | |
return detected_lang if detected_lang in lang_codes else 'en' | |
except: | |
# Fallback to simple script-based detection | |
for code, lang in lang_codes.items(): | |
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script | |
return 'hi' | |
return 'en' # Default to English if no Indic script is detected | |
def indic_vision_assistant(input_type, audio_input, text_input, image_input): | |
try: | |
whisper_processor, whisper_model = load_whisper() | |
sarvam_pipe = load_sarvam() | |
vision_model, processor = load_vision_model() | |
if input_type == "audio" and audio_input is not None: | |
transcription = process_audio_input(audio_input, whisper_processor, whisper_model) | |
elif input_type == "text" and text_input: | |
transcription = text_input | |
elif input_type == "image" and image_input is not None: | |
# Use a default prompt if no text input is provided | |
text_prompt = text_input if text_input else "Describe this image in detail." | |
transcription = process_image_input(image_input, text_prompt, vision_model, processor) | |
else: | |
return "Please provide either audio, text, or image input.", "No input provided.", None | |
response = generate_response(transcription, sarvam_pipe) | |
lang = detect_language(response) | |
audio_response = text_to_speech(response, lang) | |
return transcription, response, audio_response | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
return error_message, error_message, None | |
# Custom CSS | |
custom_css = """ | |
body { | |
background-color: #0b0f19; | |
color: #e2e8f0; | |
font-family: 'Arial', sans-serif; | |
} | |
#custom-header { | |
text-align: center; | |
padding: 20px 0; | |
background-color: #1a202c; | |
margin-bottom: 20px; | |
border-radius: 10px; | |
} | |
#custom-header h1 { | |
font-size: 2.5rem; | |
margin-bottom: 0.5rem; | |
} | |
#custom-header h1 .blue { | |
color: #60a5fa; | |
} | |
#custom-header h1 .pink { | |
color: #f472b6; | |
} | |
#custom-header h2 {@spaces.GPU | |
def indic_vision_assistant(input_type, audio_input, text_input, image_input): | |
try: | |
whisper_processor, whisper_model = load_whisper() | |
sarvam_pipe = load_sarvam() | |
vision_model, processor = load_vision_model() | |
if input_type == "audio" and audio_input is not None: | |
transcription = process_audio_input(audio_input, whisper_processor, whisper_model) | |
elif input_type == "text" and text_input: | |
transcription = text_input | |
elif input_type == "image" and image_input is not None: | |
# Use a default prompt if no text input is provided | |
text_prompt = text_input if text_input else "Describe this image in detail." | |
transcription = process_image_input(image_input, text_prompt, vision_model, processor) | |
else: | |
return "Please provide either audio, text, or image input.", "No input provided.", None | |
response = generate_response(transcription, sarvam_pipe) | |
lang = detect_language(response) | |
audio_response = text_to_speech(response, lang) | |
return transcription, response, audio_response | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
return error_message, error_message, None | |
font-size: 1.5rem; | |
color: #94a3b8; | |
} | |
.suggestions { | |
display: flex; | |
justify-content: center; | |
flex-wrap: wrap; | |
gap: 1rem; | |
margin: 20px 0; | |
} | |
.suggestion { | |
background-color: #1e293b; | |
border-radius: 0.5rem; | |
padding: 1rem; | |
display: flex; | |
align-items: center; | |
transition: transform 0.3s ease; | |
width: 200px; | |
} | |
.suggestion:hover { | |
transform: translateY(-5px); | |
} | |
.suggestion-icon { | |
font-size: 1.5rem; | |
margin-right: 1rem; | |
background-color: #2d3748; | |
padding: 0.5rem; | |
border-radius: 50%; | |
} | |
.gradio-container { | |
max-width: 100% !important; | |
} | |
#component-0, #component-1, #component-2 { | |
max-width: 100% !important; | |
} | |
footer { | |
text-align: center; | |
margin-top: 2rem; | |
color: #64748b; | |
} | |
""" | |
# Custom HTML for the header | |
custom_header = """ | |
<div id="custom-header"> | |
<h1> | |
<span class="blue">Hello,</span> | |
<span class="pink">User</span> | |
</h1> | |
<h2>How can I help you today?</h2> | |
</div> | |
""" | |
# Custom HTML for suggestions | |
custom_suggestions = """ | |
<div class="suggestions"> | |
<div class="suggestion"> | |
<span class="suggestion-icon">🎤</span> | |
<p>Speak in any Indic language</p> | |
</div> | |
<div class="suggestion"> | |
<span class="suggestion-icon">⌨️</span> | |
<p>Type in any Indic language</p> | |
</div> | |
<div class="suggestion"> | |
<span class="suggestion-icon">🖼️</span> | |
<p>Upload an image for analysis</p> | |
</div> | |
<div class="suggestion"> | |
<span class="suggestion-icon">🤖</span> | |
<p>Get AI-generated responses</p> | |
</div> | |
<div class="suggestion"> | |
<span class="suggestion-icon">🔊</span> | |
<p>Listen to audio responses</p> | |
</div> | |
</div> | |
""" | |
# Update the Gradio interface to allow text input for image processing | |
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set( | |
body_background_fill="#0b0f19", | |
body_text_color="#e2e8f0", | |
button_primary_background_fill="#3b82f6", | |
button_primary_background_fill_hover="#2563eb", | |
button_primary_text_color="white", | |
block_title_text_color="#94a3b8", | |
block_label_text_color="#94a3b8", | |
)) as iface: | |
gr.HTML(custom_header) | |
gr.HTML(custom_suggestions) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Indic Vision Assistant") | |
input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio") | |
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)") | |
text_input = gr.Textbox(label="Type your message or image prompt") | |
image_input = gr.Image(type="pil", label="Upload an image (if image input selected)") | |
submit_btn = gr.Button("Submit") | |
output_transcription = gr.Textbox(label="Transcription/Input") | |
output_response = gr.Textbox(label="Generated Response") | |
output_audio = gr.Audio(label="Audio Response") | |
submit_btn.click( | |
fn=indic_vision_assistant, | |
inputs=[input_type, audio_input, text_input, image_input], | |
outputs=[output_transcription, output_response, output_audio] | |
) | |
gr.HTML("<footer>Powered by Indic Language AI with Vision Capabilities</footer>") | |
# Launch the app | |
iface.launch() |