Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,16 @@ from transformers import pipeline, WhisperProcessor, WhisperForConditionalGenera
|
|
4 |
from gtts import gTTS
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
|
9 |
-
# Import and initialize ZeroGPU
|
10 |
import spaces
|
11 |
-
spaces.init()
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
|
18 |
# Function to safely load pipeline
|
19 |
@spaces.GPU
|
@@ -21,7 +21,7 @@ def load_pipeline(model_name, **kwargs):
|
|
21 |
try:
|
22 |
return pipeline(model=model_name, device=0, **kwargs)
|
23 |
except Exception as e:
|
24 |
-
|
25 |
return None
|
26 |
|
27 |
# Load Whisper model for speech recognition
|
@@ -32,7 +32,7 @@ def load_whisper():
|
|
32 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").cuda()
|
33 |
return processor, model
|
34 |
except Exception as e:
|
35 |
-
|
36 |
return None, None
|
37 |
|
38 |
# Load sarvam-2b for text generation
|
@@ -43,10 +43,14 @@ def load_sarvam():
|
|
43 |
# Load vision model
|
44 |
@spaces.GPU
|
45 |
def load_vision_model():
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Process audio input
|
52 |
@spaces.GPU
|
@@ -61,7 +65,8 @@ def process_audio_input(audio, whisper_processor, whisper_model):
|
|
61 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
62 |
return transcription
|
63 |
except Exception as e:
|
64 |
-
|
|
|
65 |
|
66 |
# Generate response
|
67 |
def text_to_speech(text, lang='hi'):
|
@@ -72,10 +77,11 @@ def text_to_speech(text, lang='hi'):
|
|
72 |
else:
|
73 |
tts = gTTS(text=text, lang=lang)
|
74 |
|
75 |
-
|
76 |
-
|
|
|
77 |
except Exception as e:
|
78 |
-
|
79 |
return None
|
80 |
|
81 |
# Detect language (placeholder function, replace with actual implementation)
|
@@ -93,10 +99,14 @@ def generate_response(transcription, sarvam_pipe):
|
|
93 |
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
94 |
return response
|
95 |
except Exception as e:
|
96 |
-
|
|
|
97 |
|
98 |
@spaces.GPU
|
99 |
def process_image(image, text_input, vision_model, vision_processor):
|
|
|
|
|
|
|
100 |
try:
|
101 |
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
|
102 |
image = Image.fromarray(image).convert("RGB")
|
@@ -106,7 +116,8 @@ def process_image(image, text_input, vision_model, vision_processor):
|
|
106 |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
107 |
return response
|
108 |
except Exception as e:
|
109 |
-
|
|
|
110 |
|
111 |
@spaces.GPU
|
112 |
def multimodal_assistant(input_type, audio_input, text_input, image_input):
|
@@ -131,8 +142,8 @@ def multimodal_assistant(input_type, audio_input, text_input, image_input):
|
|
131 |
|
132 |
return response, audio_response
|
133 |
except Exception as e:
|
134 |
-
|
135 |
-
return
|
136 |
|
137 |
# Custom CSS (you can keep your existing custom CSS here)
|
138 |
custom_css = """
|
|
|
4 |
from gtts import gTTS
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
7 |
+
import logging
|
8 |
+
import os
|
|
|
9 |
import spaces
|
|
|
10 |
|
11 |
+
# Set up logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
|
15 |
+
# Initialize ZeroGPU
|
16 |
+
spaces.init()
|
17 |
|
18 |
# Function to safely load pipeline
|
19 |
@spaces.GPU
|
|
|
21 |
try:
|
22 |
return pipeline(model=model_name, device=0, **kwargs)
|
23 |
except Exception as e:
|
24 |
+
logger.error(f"Error loading {model_name} pipeline: {e}")
|
25 |
return None
|
26 |
|
27 |
# Load Whisper model for speech recognition
|
|
|
32 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").cuda()
|
33 |
return processor, model
|
34 |
except Exception as e:
|
35 |
+
logger.error(f"Error loading Whisper model: {e}")
|
36 |
return None, None
|
37 |
|
38 |
# Load sarvam-2b for text generation
|
|
|
43 |
# Load vision model
|
44 |
@spaces.GPU
|
45 |
def load_vision_model():
|
46 |
+
try:
|
47 |
+
model_id = "microsoft/Phi-3.5-vision-instruct"
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype="auto", attn_implementation="flash_attention_2").cuda().eval()
|
49 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
50 |
+
return model, processor
|
51 |
+
except Exception as e:
|
52 |
+
logger.error(f"Error loading vision model: {e}")
|
53 |
+
return None, None
|
54 |
|
55 |
# Process audio input
|
56 |
@spaces.GPU
|
|
|
65 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
66 |
return transcription
|
67 |
except Exception as e:
|
68 |
+
logger.error(f"Error processing audio: {e}")
|
69 |
+
return f"Error processing audio. Please type your message instead."
|
70 |
|
71 |
# Generate response
|
72 |
def text_to_speech(text, lang='hi'):
|
|
|
77 |
else:
|
78 |
tts = gTTS(text=text, lang=lang)
|
79 |
|
80 |
+
output_path = "/tmp/response.mp3"
|
81 |
+
tts.save(output_path)
|
82 |
+
return output_path
|
83 |
except Exception as e:
|
84 |
+
logger.error(f"Error in text-to-speech: {e}")
|
85 |
return None
|
86 |
|
87 |
# Detect language (placeholder function, replace with actual implementation)
|
|
|
99 |
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
100 |
return response
|
101 |
except Exception as e:
|
102 |
+
logger.error(f"Error generating response: {e}")
|
103 |
+
return f"Error generating response. Please try again."
|
104 |
|
105 |
@spaces.GPU
|
106 |
def process_image(image, text_input, vision_model, vision_processor):
|
107 |
+
if vision_model is None or vision_processor is None:
|
108 |
+
return "Error: Vision model is not available."
|
109 |
+
|
110 |
try:
|
111 |
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
|
112 |
image = Image.fromarray(image).convert("RGB")
|
|
|
116 |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
117 |
return response
|
118 |
except Exception as e:
|
119 |
+
logger.error(f"Error processing image: {e}")
|
120 |
+
return f"Error processing image. Please try again."
|
121 |
|
122 |
@spaces.GPU
|
123 |
def multimodal_assistant(input_type, audio_input, text_input, image_input):
|
|
|
142 |
|
143 |
return response, audio_response
|
144 |
except Exception as e:
|
145 |
+
logger.error(f"An error occurred in multimodal_assistant: {e}")
|
146 |
+
return f"An error occurred. Please try again.", None
|
147 |
|
148 |
# Custom CSS (you can keep your existing custom CSS here)
|
149 |
custom_css = """
|