Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,9 @@ import gradio as gr
|
|
5 |
from threading import Thread
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
-
import spaces
|
|
|
|
|
9 |
|
10 |
# Install flash-attention
|
11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
@@ -96,6 +98,24 @@ def process_vision_query(image, text_input):
|
|
96 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
97 |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
98 |
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
# Custom CSS
|
101 |
custom_css = """
|
@@ -134,8 +154,8 @@ custom_suggestions = """
|
|
134 |
<p>Analyze Images with Vision Model</p>
|
135 |
</div>
|
136 |
<div class="suggestion">
|
137 |
-
<span class="suggestion-icon"
|
138 |
-
<p>
|
139 |
</div>
|
140 |
<div class="suggestion">
|
141 |
<span class="suggestion-icon">π</span>
|
@@ -158,33 +178,23 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
|
158 |
gr.HTML(custom_suggestions)
|
159 |
|
160 |
with gr.Tab("Text Model (Phi-3.5-mini)"):
|
161 |
-
|
162 |
-
msg = gr.Textbox(label="Message", placeholder="Type your message here...")
|
163 |
-
with gr.Accordion("Advanced Options", open=False):
|
164 |
-
system_prompt = gr.Textbox(value="You are a helpful assistant", label="System Prompt")
|
165 |
-
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature")
|
166 |
-
max_new_tokens = gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens")
|
167 |
-
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p")
|
168 |
-
top_k = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k")
|
169 |
-
|
170 |
-
submit_btn = gr.Button("Submit", variant="primary")
|
171 |
-
clear_btn = gr.Button("Clear Chat", variant="secondary")
|
172 |
-
|
173 |
-
submit_btn.click(stream_text_chat, [msg, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k], [chatbot])
|
174 |
-
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
175 |
|
176 |
with gr.Tab("Vision Model (Phi-3.5-vision)"):
|
|
|
|
|
|
|
177 |
with gr.Row():
|
178 |
with gr.Column(scale=1):
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
with gr.Column(scale=1):
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI</footer>")
|
188 |
|
189 |
if __name__ == "__main__":
|
190 |
demo.launch()
|
|
|
5 |
from threading import Thread
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
+
import spaces
|
9 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
+
import soundfile as sf
|
11 |
|
12 |
# Install flash-attention
|
13 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
|
98 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
99 |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
100 |
return response
|
101 |
+
|
102 |
+
# Load Parler-TTS model
|
103 |
+
tts_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
104 |
+
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1").to(tts_device)
|
105 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
|
106 |
+
|
107 |
+
@spaces.GPU
|
108 |
+
def generate_speech(prompt, description):
|
109 |
+
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to(tts_device)
|
110 |
+
prompt_input_ids = tts_tokenizer(prompt, return_tensors="pt").input_ids.to(tts_device)
|
111 |
+
|
112 |
+
generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
113 |
+
audio_arr = generation.cpu().numpy().squeeze()
|
114 |
+
|
115 |
+
output_path = "output_audio.wav"
|
116 |
+
sf.write(output_path, audio_arr, tts_model.config.sampling_rate)
|
117 |
+
|
118 |
+
return output_path
|
119 |
|
120 |
# Custom CSS
|
121 |
custom_css = """
|
|
|
154 |
<p>Analyze Images with Vision Model</p>
|
155 |
</div>
|
156 |
<div class="suggestion">
|
157 |
+
<span class="suggestion-icon">π</span>
|
158 |
+
<p>Generate Speech with Parler-TTS</p>
|
159 |
</div>
|
160 |
<div class="suggestion">
|
161 |
<span class="suggestion-icon">π</span>
|
|
|
178 |
gr.HTML(custom_suggestions)
|
179 |
|
180 |
with gr.Tab("Text Model (Phi-3.5-mini)"):
|
181 |
+
# ... (previous text model code remains the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
with gr.Tab("Vision Model (Phi-3.5-vision)"):
|
184 |
+
# ... (previous vision model code remains the same)
|
185 |
+
|
186 |
+
with gr.Tab("Text-to-Speech (Parler-TTS)"):
|
187 |
with gr.Row():
|
188 |
with gr.Column(scale=1):
|
189 |
+
tts_prompt = gr.Textbox(label="Text to Speak", placeholder="Enter the text you want to convert to speech...")
|
190 |
+
tts_description = gr.Textbox(label="Voice Description", value="A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up.", lines=3)
|
191 |
+
tts_submit_btn = gr.Button("Generate Speech", variant="primary")
|
192 |
with gr.Column(scale=1):
|
193 |
+
tts_output_audio = gr.Audio(label="Generated Speech")
|
194 |
|
195 |
+
tts_submit_btn.click(generate_speech, inputs=[tts_prompt, tts_description], outputs=[tts_output_audio])
|
196 |
|
197 |
+
gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI and Parler-TTS</footer>")
|
198 |
|
199 |
if __name__ == "__main__":
|
200 |
demo.launch()
|