Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,33 @@
|
|
1 |
-
# Import spaces first to avoid CUDA initialization issues
|
2 |
import spaces
|
3 |
-
|
4 |
-
# Then import other libraries
|
5 |
import torch
|
6 |
-
import
|
7 |
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
|
8 |
from gtts import gTTS
|
9 |
-
import gradio as gr
|
10 |
-
from PIL import Image
|
11 |
-
import os
|
12 |
from langdetect import detect
|
13 |
-
import subprocess
|
14 |
|
15 |
-
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
19 |
-
|
20 |
-
# Function to safely load pipeline within a GPU-decorated function
|
21 |
-
@spaces.GPU
|
22 |
-
def load_pipeline(model_name, **kwargs):
|
23 |
-
try:
|
24 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
25 |
-
return pipeline(model=model_name, device=device, **kwargs)
|
26 |
-
except Exception as e:
|
27 |
-
print(f"Error loading {model_name} pipeline: {e}")
|
28 |
-
return None
|
29 |
|
30 |
-
# Load Whisper model for speech recognition within a GPU-decorated function
|
31 |
@spaces.GPU
|
32 |
def load_whisper():
|
33 |
try:
|
34 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
35 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
36 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
37 |
return processor, model
|
38 |
except Exception as e:
|
39 |
print(f"Error loading Whisper model: {e}")
|
40 |
return None, None
|
41 |
|
42 |
-
# Load vision model within a GPU-decorated function
|
43 |
@spaces.GPU
|
44 |
def load_vision_model():
|
45 |
try:
|
46 |
model_id = "microsoft/Phi-3.5-vision-instruct"
|
47 |
model = AutoModelForCausalLM.from_pretrained(
|
48 |
-
model_id, trust_remote_code=True, torch_dtype=torch.float16
|
49 |
)
|
50 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
51 |
return model, processor
|
@@ -53,43 +35,32 @@ def load_vision_model():
|
|
53 |
print(f"Error loading vision model: {e}")
|
54 |
return None, None
|
55 |
|
56 |
-
# Load sarvam-2b for text generation within a GPU-decorated function
|
57 |
@spaces.GPU
|
58 |
def load_sarvam():
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
sarvam_pipe = load_sarvam()
|
65 |
|
66 |
@spaces.GPU
|
67 |
-
def
|
68 |
-
|
69 |
-
return "Error: Speech recognition model is not available. Please type your message instead."
|
70 |
-
|
71 |
try:
|
72 |
-
audio, sr = librosa.load(
|
73 |
-
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features
|
74 |
predicted_ids = whisper_model.generate(input_features)
|
75 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
76 |
return transcription
|
77 |
except Exception as e:
|
78 |
-
return f"Error processing audio: {str(e)}
|
79 |
|
80 |
@spaces.GPU
|
81 |
-
def
|
82 |
-
if vision_model is None or vision_processor is None:
|
83 |
-
return "Error: Vision model is not available."
|
84 |
-
|
85 |
try:
|
86 |
-
messages = [
|
87 |
-
|
88 |
-
|
89 |
-
prompt = vision_processor.tokenizer.apply_chat_template(
|
90 |
-
messages, tokenize=False, add_generation_prompt=True
|
91 |
-
)
|
92 |
-
inputs = vision_processor(prompt, image, return_tensors="pt").to(vision_model.device)
|
93 |
generate_ids = vision_model.generate(**inputs, max_new_tokens=1000, temperature=0.2, do_sample=True)
|
94 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
95 |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
@@ -97,10 +68,8 @@ def process_image_input(image, text_prompt):
|
|
97 |
except Exception as e:
|
98 |
return f"Error processing image: {str(e)}"
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
return "Error: Text generation model is not available."
|
103 |
-
|
104 |
try:
|
105 |
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
106 |
return response
|
@@ -119,17 +88,21 @@ def text_to_speech(text, lang='hi'):
|
|
119 |
@spaces.GPU
|
120 |
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
|
121 |
try:
|
|
|
|
|
|
|
|
|
122 |
if input_type == "audio" and audio_input is not None:
|
123 |
-
transcription =
|
124 |
elif input_type == "text" and text_input:
|
125 |
transcription = text_input
|
126 |
elif input_type == "image" and image_input is not None:
|
127 |
text_prompt = text_input if text_input else "Describe this image in detail."
|
128 |
-
transcription =
|
129 |
else:
|
130 |
return "Please provide either audio, text, or image input.", "No input provided.", None
|
131 |
|
132 |
-
response = generate_response(transcription)
|
133 |
lang = detect(response)
|
134 |
audio_response = text_to_speech(response, lang)
|
135 |
|
|
|
|
|
1 |
import spaces
|
2 |
+
import gradio as gr
|
|
|
3 |
import torch
|
4 |
+
import os
|
5 |
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
|
6 |
from gtts import gTTS
|
|
|
|
|
|
|
7 |
from langdetect import detect
|
|
|
8 |
|
9 |
+
# Disable CUDA initialization at import
|
10 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
11 |
+
torch.set_grad_enabled(False)
|
12 |
|
13 |
+
print("CUDA initialization disabled at import")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
15 |
@spaces.GPU
|
16 |
def load_whisper():
|
17 |
try:
|
|
|
18 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
19 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
20 |
return processor, model
|
21 |
except Exception as e:
|
22 |
print(f"Error loading Whisper model: {e}")
|
23 |
return None, None
|
24 |
|
|
|
25 |
@spaces.GPU
|
26 |
def load_vision_model():
|
27 |
try:
|
28 |
model_id = "microsoft/Phi-3.5-vision-instruct"
|
29 |
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
model_id, trust_remote_code=True, torch_dtype=torch.float16
|
31 |
)
|
32 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
33 |
return model, processor
|
|
|
35 |
print(f"Error loading vision model: {e}")
|
36 |
return None, None
|
37 |
|
|
|
38 |
@spaces.GPU
|
39 |
def load_sarvam():
|
40 |
+
try:
|
41 |
+
return pipeline('sarvamai/sarvam-2b-v0.5')
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error loading Sarvam model: {e}")
|
44 |
+
return None
|
|
|
45 |
|
46 |
@spaces.GPU
|
47 |
+
def process_audio(audio_path, whisper_processor, whisper_model):
|
48 |
+
import librosa
|
|
|
|
|
49 |
try:
|
50 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
51 |
+
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features
|
52 |
predicted_ids = whisper_model.generate(input_features)
|
53 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
54 |
return transcription
|
55 |
except Exception as e:
|
56 |
+
return f"Error processing audio: {str(e)}"
|
57 |
|
58 |
@spaces.GPU
|
59 |
+
def process_image(image, text_prompt, vision_model, vision_processor):
|
|
|
|
|
|
|
60 |
try:
|
61 |
+
messages = [{"role": "user", "content": f"{text_prompt}\n<|image_1|>"}]
|
62 |
+
prompt = vision_processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
63 |
+
inputs = vision_processor(prompt, image, return_tensors="pt")
|
|
|
|
|
|
|
|
|
64 |
generate_ids = vision_model.generate(**inputs, max_new_tokens=1000, temperature=0.2, do_sample=True)
|
65 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
66 |
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
68 |
except Exception as e:
|
69 |
return f"Error processing image: {str(e)}"
|
70 |
|
71 |
+
@spaces.GPU
|
72 |
+
def generate_response(transcription, sarvam_pipe):
|
|
|
|
|
73 |
try:
|
74 |
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
75 |
return response
|
|
|
88 |
@spaces.GPU
|
89 |
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
|
90 |
try:
|
91 |
+
whisper_processor, whisper_model = load_whisper()
|
92 |
+
vision_model, vision_processor = load_vision_model()
|
93 |
+
sarvam_pipe = load_sarvam()
|
94 |
+
|
95 |
if input_type == "audio" and audio_input is not None:
|
96 |
+
transcription = process_audio(audio_input, whisper_processor, whisper_model)
|
97 |
elif input_type == "text" and text_input:
|
98 |
transcription = text_input
|
99 |
elif input_type == "image" and image_input is not None:
|
100 |
text_prompt = text_input if text_input else "Describe this image in detail."
|
101 |
+
transcription = process_image(image_input, text_prompt, vision_model, vision_processor)
|
102 |
else:
|
103 |
return "Please provide either audio, text, or image input.", "No input provided.", None
|
104 |
|
105 |
+
response = generate_response(transcription, sarvam_pipe)
|
106 |
lang = detect(response)
|
107 |
audio_response = text_to_speech(response, lang)
|
108 |
|