Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import librosa
|
| 3 |
+
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
|
| 4 |
+
from gtts import gTTS
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import spaces
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import os
|
| 9 |
+
import io
|
| 10 |
+
import subprocess
|
| 11 |
+
from langdetect import detect
|
| 12 |
+
|
| 13 |
+
print("Using GPU for operations when available")
|
| 14 |
+
|
| 15 |
+
# Install flash-attn
|
| 16 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 17 |
+
|
| 18 |
+
# Function to safely load pipeline within a GPU-decorated function
|
| 19 |
+
@spaces.GPU
|
| 20 |
+
def load_pipeline(model_name, **kwargs):
|
| 21 |
+
try:
|
| 22 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
| 23 |
+
return pipeline(model=model_name, device=device, **kwargs)
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Error loading {model_name} pipeline: {e}")
|
| 26 |
+
return None
|
| 27 |
+
|
| 28 |
+
# Load Whisper model for speech recognition within a GPU-decorated function
|
| 29 |
+
@spaces.GPU
|
| 30 |
+
def load_whisper():
|
| 31 |
+
try:
|
| 32 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
| 33 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
| 34 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
| 35 |
+
return processor, model
|
| 36 |
+
except Exception as e:
|
| 37 |
+
print(f"Error loading Whisper model: {e}")
|
| 38 |
+
return None, None
|
| 39 |
+
|
| 40 |
+
# Load sarvam-2b for text generation within a GPU-decorated function
|
| 41 |
+
@spaces.GPU
|
| 42 |
+
def load_sarvam():
|
| 43 |
+
return load_pipeline('sarvamai/sarvam-2b-v0.5')
|
| 44 |
+
|
| 45 |
+
# Load Phi-3.5-vision-instruct model
|
| 46 |
+
@spaces.GPU
|
| 47 |
+
def load_vision_model():
|
| 48 |
+
try:
|
| 49 |
+
model_id = "microsoft/Phi-3.5-vision-instruct"
|
| 50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 51 |
+
model_id, trust_remote_code=True, torch_dtype=torch.float16, use_flash_attention_2=False
|
| 52 |
+
)
|
| 53 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
| 54 |
+
return model, processor
|
| 55 |
+
except Exception as e:
|
| 56 |
+
print(f"Error loading vision model: {e}")
|
| 57 |
+
return None, None
|
| 58 |
+
|
| 59 |
+
# Process audio input within a GPU-decorated function
|
| 60 |
+
@spaces.GPU
|
| 61 |
+
def process_audio_input(audio, whisper_processor, whisper_model):
|
| 62 |
+
if whisper_processor is None or whisper_model is None:
|
| 63 |
+
return "Error: Speech recognition model is not available. Please type your message instead."
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
audio, sr = librosa.load(audio, sr=16000)
|
| 67 |
+
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
|
| 68 |
+
predicted_ids = whisper_model.generate(input_features)
|
| 69 |
+
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 70 |
+
return transcription
|
| 71 |
+
except Exception as e:
|
| 72 |
+
return f"Error processing audio: {str(e)}. Please type your message instead."
|
| 73 |
+
|
| 74 |
+
# Process image input
|
| 75 |
+
@spaces.GPU
|
| 76 |
+
def process_image_input(image, vision_model, vision_processor):
|
| 77 |
+
if vision_model is None or vision_processor is None:
|
| 78 |
+
return "Error: Vision model is not available."
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
inputs = vision_processor(images=image, return_tensors="pt")
|
| 82 |
+
inputs = {k: v.to(vision_model.device) for k, v in inputs.items()}
|
| 83 |
+
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
outputs = vision_model.generate(**inputs, max_new_tokens=512, do_sample=True, top_k=50, top_p=0.95)
|
| 86 |
+
|
| 87 |
+
generated_text = vision_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 88 |
+
return generated_text
|
| 89 |
+
except Exception as e:
|
| 90 |
+
return f"Error processing image: {str(e)}"
|
| 91 |
+
|
| 92 |
+
# Generate response within a GPU-decorated function
|
| 93 |
+
@spaces.GPU
|
| 94 |
+
def generate_response(transcription, sarvam_pipe):
|
| 95 |
+
if sarvam_pipe is None:
|
| 96 |
+
return "Error: Text generation model is not available."
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
# Generate response using the sarvam-2b model
|
| 100 |
+
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
| 101 |
+
return response
|
| 102 |
+
except Exception as e:
|
| 103 |
+
return f"Error generating response: {str(e)}"
|
| 104 |
+
|
| 105 |
+
# Text-to-speech function
|
| 106 |
+
def text_to_speech(text, lang='hi'):
|
| 107 |
+
try:
|
| 108 |
+
# Use a better TTS engine for Indic languages
|
| 109 |
+
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
|
| 110 |
+
# You might want to use a different TTS library here
|
| 111 |
+
# For example, you could use the Google Cloud Text-to-Speech API
|
| 112 |
+
# or a specialized Indic language TTS library
|
| 113 |
+
|
| 114 |
+
# This is a placeholder for a better Indic TTS solution
|
| 115 |
+
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
|
| 116 |
+
else:
|
| 117 |
+
tts = gTTS(text=text, lang=lang)
|
| 118 |
+
|
| 119 |
+
tts.save("response.mp3")
|
| 120 |
+
return "response.mp3"
|
| 121 |
+
except Exception as e:
|
| 122 |
+
print(f"Error in text-to-speech: {str(e)}")
|
| 123 |
+
return None
|
| 124 |
+
|
| 125 |
+
# Improved language detection function
|
| 126 |
+
def detect_language(text):
|
| 127 |
+
lang_codes = {
|
| 128 |
+
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
|
| 129 |
+
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi',
|
| 130 |
+
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English'
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
detected_lang = detect(text)
|
| 135 |
+
return detected_lang if detected_lang in lang_codes else 'en'
|
| 136 |
+
except:
|
| 137 |
+
# Fallback to simple script-based detection
|
| 138 |
+
for code, lang in lang_codes.items():
|
| 139 |
+
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
|
| 140 |
+
return 'hi'
|
| 141 |
+
return 'en' # Default to English if no Indic script is detected
|
| 142 |
+
|
| 143 |
+
@spaces.GPU
|
| 144 |
+
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
|
| 145 |
+
try:
|
| 146 |
+
# Load models within the GPU-decorated function
|
| 147 |
+
whisper_processor, whisper_model = load_whisper()
|
| 148 |
+
sarvam_pipe = load_sarvam()
|
| 149 |
+
vision_model, vision_processor = load_vision_model()
|
| 150 |
+
|
| 151 |
+
if input_type == "audio" and audio_input is not None:
|
| 152 |
+
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
|
| 153 |
+
elif input_type == "text" and text_input:
|
| 154 |
+
transcription = text_input
|
| 155 |
+
elif input_type == "image" and image_input is not None:
|
| 156 |
+
transcription = process_image_input(image_input, vision_model, vision_processor)
|
| 157 |
+
else:
|
| 158 |
+
return "Please provide either audio, text, or image input.", "No input provided.", None
|
| 159 |
+
|
| 160 |
+
response = generate_response(transcription, sarvam_pipe)
|
| 161 |
+
lang = detect_language(response)
|
| 162 |
+
audio_response = text_to_speech(response, lang)
|
| 163 |
+
|
| 164 |
+
return transcription, response, audio_response
|
| 165 |
+
except Exception as e:
|
| 166 |
+
error_message = f"An error occurred: {str(e)}"
|
| 167 |
+
return error_message, error_message, None
|
| 168 |
+
|
| 169 |
+
# Custom CSS
|
| 170 |
+
custom_css = """
|
| 171 |
+
body {
|
| 172 |
+
background-color: #0b0f19;
|
| 173 |
+
color: #e2e8f0;
|
| 174 |
+
font-family: 'Arial', sans-serif;
|
| 175 |
+
}
|
| 176 |
+
#custom-header {
|
| 177 |
+
text-align: center;
|
| 178 |
+
padding: 20px 0;
|
| 179 |
+
background-color: #1a202c;
|
| 180 |
+
margin-bottom: 20px;
|
| 181 |
+
border-radius: 10px;
|
| 182 |
+
}
|
| 183 |
+
#custom-header h1 {
|
| 184 |
+
font-size: 2.5rem;
|
| 185 |
+
margin-bottom: 0.5rem;
|
| 186 |
+
}
|
| 187 |
+
#custom-header h1 .blue {
|
| 188 |
+
color: #60a5fa;
|
| 189 |
+
}
|
| 190 |
+
#custom-header h1 .pink {
|
| 191 |
+
color: #f472b6;
|
| 192 |
+
}
|
| 193 |
+
#custom-header h2 {
|
| 194 |
+
font-size: 1.5rem;
|
| 195 |
+
color: #94a3b8;
|
| 196 |
+
}
|
| 197 |
+
.suggestions {
|
| 198 |
+
display: flex;
|
| 199 |
+
justify-content: center;
|
| 200 |
+
flex-wrap: wrap;
|
| 201 |
+
gap: 1rem;
|
| 202 |
+
margin: 20px 0;
|
| 203 |
+
}
|
| 204 |
+
.suggestion {
|
| 205 |
+
background-color: #1e293b;
|
| 206 |
+
border-radius: 0.5rem;
|
| 207 |
+
padding: 1rem;
|
| 208 |
+
display: flex;
|
| 209 |
+
align-items: center;
|
| 210 |
+
transition: transform 0.3s ease;
|
| 211 |
+
width: 200px;
|
| 212 |
+
}
|
| 213 |
+
.suggestion:hover {
|
| 214 |
+
transform: translateY(-5px);
|
| 215 |
+
}
|
| 216 |
+
.suggestion-icon {
|
| 217 |
+
font-size: 1.5rem;
|
| 218 |
+
margin-right: 1rem;
|
| 219 |
+
background-color: #2d3748;
|
| 220 |
+
padding: 0.5rem;
|
| 221 |
+
border-radius: 50%;
|
| 222 |
+
}
|
| 223 |
+
.gradio-container {
|
| 224 |
+
max-width: 100% !important;
|
| 225 |
+
}
|
| 226 |
+
#component-0, #component-1, #component-2 {
|
| 227 |
+
max-width: 100% !important;
|
| 228 |
+
}
|
| 229 |
+
footer {
|
| 230 |
+
text-align: center;
|
| 231 |
+
margin-top: 2rem;
|
| 232 |
+
color: #64748b;
|
| 233 |
+
}
|
| 234 |
+
"""
|
| 235 |
+
|
| 236 |
+
# Custom HTML for the header
|
| 237 |
+
custom_header = """
|
| 238 |
+
<div id="custom-header">
|
| 239 |
+
<h1>
|
| 240 |
+
<span class="blue">Hello,</span>
|
| 241 |
+
<span class="pink">User</span>
|
| 242 |
+
</h1>
|
| 243 |
+
<h2>How can I help you today?</h2>
|
| 244 |
+
</div>
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
# Custom HTML for suggestions
|
| 248 |
+
custom_suggestions = """
|
| 249 |
+
<div class="suggestions">
|
| 250 |
+
<div class="suggestion">
|
| 251 |
+
<span class="suggestion-icon">🎤</span>
|
| 252 |
+
<p>Speak in any Indic language</p>
|
| 253 |
+
</div>
|
| 254 |
+
<div class="suggestion">
|
| 255 |
+
<span class="suggestion-icon">⌨️</span>
|
| 256 |
+
<p>Type in any Indic language</p>
|
| 257 |
+
</div>
|
| 258 |
+
<div class="suggestion">
|
| 259 |
+
<span class="suggestion-icon">🖼️</span>
|
| 260 |
+
<p>Upload an image for analysis</p>
|
| 261 |
+
</div>
|
| 262 |
+
<div class="suggestion">
|
| 263 |
+
<span class="suggestion-icon">🤖</span>
|
| 264 |
+
<p>Get AI-generated responses</p>
|
| 265 |
+
</div>
|
| 266 |
+
<div class="suggestion">
|
| 267 |
+
<span class="suggestion-icon">🔊</span>
|
| 268 |
+
<p>Listen to audio responses</p>
|
| 269 |
+
</div>
|
| 270 |
+
</div>
|
| 271 |
+
"""
|
| 272 |
+
|
| 273 |
+
# Create Gradio interface
|
| 274 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
| 275 |
+
body_background_fill="#0b0f19",
|
| 276 |
+
body_text_color="#e2e8f0",
|
| 277 |
+
button_primary_background_fill="#3b82f6",
|
| 278 |
+
button_primary_background_fill_hover="#2563eb",
|
| 279 |
+
button_primary_text_color="white",
|
| 280 |
+
block_title_text_color="#94a3b8",
|
| 281 |
+
block_label_text_color="#94a3b8",
|
| 282 |
+
)) as iface:
|
| 283 |
+
gr.HTML(custom_header)
|
| 284 |
+
gr.HTML(custom_suggestions)
|
| 285 |
+
|
| 286 |
+
with gr.Row():
|
| 287 |
+
with gr.Column(scale=1):
|
| 288 |
+
gr.Markdown("### Indic Vision Assistant")
|
| 289 |
+
|
| 290 |
+
input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
|
| 291 |
+
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
|
| 292 |
+
text_input = gr.Textbox(label="Type your message (if text input selected)")
|
| 293 |
+
image_input = gr.Image(type="pil", label="Upload an image (if image input selected)")
|
| 294 |
+
|
| 295 |
+
submit_btn = gr.Button("Submit")
|
| 296 |
+
|
| 297 |
+
output_transcription = gr.Textbox(label="Transcription/Input")
|
| 298 |
+
output_response = gr.Textbox(label="Generated Response")
|
| 299 |
+
output_audio = gr.Audio(label="Audio Response")
|
| 300 |
+
|
| 301 |
+
submit_btn.click(
|
| 302 |
+
fn=indic_vision_assistant,
|
| 303 |
+
inputs=[input_type, audio_input, text_input, image_input],
|
| 304 |
+
outputs=[output_transcription, output_response, output_audio]
|
| 305 |
+
)
|
| 306 |
+
gr.HTML("<footer>Powered by Indic Language AI with Vision Capabilities</footer>")
|
| 307 |
+
|
| 308 |
+
# Launch the app
|
| 309 |
+
iface.launch()
|