Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import torch | |
from transformers import AutoProcessor, CLIPSegForImageSegmentation | |
# Load the CLIPSeg model and processor | |
processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") | |
def segment_everything(image): | |
inputs = processor(text=["object"], images=[image], padding="max_length", return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
preds = outputs.logits.squeeze().sigmoid() | |
segmentation = (preds.numpy() * 255).astype(np.uint8) | |
return Image.fromarray(segmentation) | |
def segment_box(image, x1, y1, x2, y2): | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
cropped_image = image[y1:y2, x1:x2] | |
inputs = processor(text=["object"], images=[cropped_image], padding="max_length", return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
preds = outputs.logits.squeeze().sigmoid() | |
segmentation = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8) | |
segmentation[y1:y2, x1:x2] = (preds.numpy() * 255).astype(np.uint8) | |
return Image.fromarray(segmentation) | |
def update_image(image, segmentation): | |
if segmentation is None: | |
return image | |
# Ensure image is in the correct format (PIL Image) | |
if isinstance(image, np.ndarray): | |
image_pil = Image.fromarray((image * 255).astype(np.uint8)) | |
else: | |
image_pil = image | |
# Convert segmentation to RGBA | |
seg_pil = Image.fromarray(segmentation).convert('RGBA') | |
# Resize segmentation to match input image if necessary | |
if image_pil.size != seg_pil.size: | |
seg_pil = seg_pil.resize(image_pil.size, Image.NEAREST) | |
# Blend images | |
blended = Image.blend(image_pil.convert('RGBA'), seg_pil, 0.5) | |
return np.array(blended) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Segment Anything-like Demo") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(label="Input Image") | |
with gr.Row(): | |
x1_input = gr.Number(label="X1") | |
y1_input = gr.Number(label="Y1") | |
x2_input = gr.Number(label="X2") | |
y2_input = gr.Number(label="Y2") | |
with gr.Row(): | |
everything_btn = gr.Button("Everything") | |
box_btn = gr.Button("Box") | |
with gr.Column(scale=1): | |
output_image = gr.Image(label="Segmentation Result") | |
everything_btn.click( | |
fn=segment_everything, | |
inputs=[input_image], | |
outputs=[output_image] | |
) | |
box_btn.click( | |
fn=segment_box, | |
inputs=[input_image, x1_input, y1_input, x2_input, y2_input], | |
outputs=[output_image] | |
) | |
output_image.change( | |
fn=update_image, | |
inputs=[input_image, output_image], | |
outputs=[output_image] | |
) | |
demo.launch() |