SegmentVision / app.py
sagar007's picture
Update app.py
72f4c5c verified
raw
history blame
5.02 kB
import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import io
from ultralytics import FastSAM
from ultralytics.models.fastsam import FastSAMPrompt
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load FastSAM model
model = FastSAM("FastSAM-s.pt") # or FastSAM-x.pt
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def plot(annotations, prompt_process, mask_random_color=True, better_quality=True, retina=True, with_contours=True):
for ann in annotations:
image = ann.orig_img[..., ::-1] # BGR to RGB
original_h, original_w = ann.orig_shape
fig = plt.figure(figsize=(original_w / 100, original_h / 100))
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.imshow(image)
if ann.masks is not None:
masks = ann.masks.data
if better_quality:
if isinstance(masks[0], torch.Tensor):
masks = np.array(masks.cpu())
for i, mask in enumerate(masks):
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
prompt_process.fast_show_mask(
masks,
plt.gca(),
random_color=mask_random_color,
bbox=None,
points=None,
pointlabel=None,
retinamask=retina,
target_height=original_h,
target_width=original_w,
)
if with_contours:
contour_all = []
temp = np.zeros((original_h, original_w, 1))
for i, mask in enumerate(masks):
mask = mask.astype(np.uint8)
if not retina:
mask = cv2.resize(mask, (original_w, original_h), interpolation=cv2.INTER_NEAREST)
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour_all.extend(iter(contours))
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
color = np.array([0 / 255, 0 / 255, 1.0, 0.8])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
plt.imshow(contour_mask)
plt.axis("off")
plt.close()
return fig2img(fig)
def segment_image(input_image, object_name):
try:
if input_image is None:
return None, "Please upload an image before submitting."
input_image = Image.fromarray(input_image).convert("RGB")
# Run FastSAM model with adjusted parameters
everything_results = model(input_image, retina_masks=True, imgsz=1024, conf=0.25, iou=0.7)
# Prepare a Prompt Process object
prompt_process = FastSAMPrompt(input_image, everything_results, device=device)
# Use text prompt to segment the specified object
results = prompt_process.text_prompt(text=object_name)
if not results:
return input_image, f"Could not find '{object_name}' in the image."
# Post-process the masks
for ann in results:
if ann.masks is not None:
masks = ann.masks.data
if isinstance(masks[0], torch.Tensor):
masks = np.array(masks.cpu())
for i, mask in enumerate(masks):
# Apply more aggressive morphological operations
kernel = np.ones((5,5), np.uint8)
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, kernel)
masks[i] = cv2.dilate(mask, kernel, iterations=2)
ann.masks.data = masks
# Plot the results
result_image = plot(annotations=results, prompt_process=prompt_process)
return result_image, f"Segmented '{object_name}' in the image."
except Exception as e:
return None, f"An error occurred: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=segment_image,
inputs=[
gr.Image(type="numpy", label="Upload an image"),
gr.Textbox(label="Specify object to segment (e.g., dog, cat, grass)")
],
outputs=[
gr.Image(type="pil", label="Segmented Image"),
gr.Textbox(label="Status")
],
title="FastSAM Segmentation with Object Specification",
description="Upload an image and specify an object to segment using FastSAM."
)
# Launch the interface
iface.launch()