Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoProcessor, AutoModel | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
import random | |
import os | |
import wget # To download weights | |
import traceback # For detailed error printing | |
# --- Configuration & Model Loading --- | |
# Device Selection | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {DEVICE}") | |
# --- CLIP Setup --- | |
CLIP_MODEL_ID = "openai/clip-vit-base-patch32" | |
clip_processor = None | |
clip_model = None | |
def load_clip_model(): | |
global clip_processor, clip_model | |
if clip_processor is None: | |
print(f"Loading CLIP processor: {CLIP_MODEL_ID}...") | |
clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID) | |
print("CLIP processor loaded.") | |
if clip_model is None: | |
print(f"Loading CLIP model: {CLIP_MODEL_ID}...") | |
clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE) | |
print(f"CLIP model loaded to {DEVICE}.") | |
# --- FastSAM Setup --- | |
FASTSAM_CHECKPOINT = "FastSAM-s.pt" | |
# Use the official model hub repo URL | |
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}" | |
fastsam_model = None | |
fastsam_lib_imported = False # Flag to check if import worked | |
def check_and_import_fastsam(): | |
global fastsam_lib_imported | |
if not fastsam_lib_imported: | |
try: | |
from fastsam import FastSAM, FastSAMPrompt | |
globals()['FastSAM'] = FastSAM # Make classes available globally | |
globals()['FastSAMPrompt'] = FastSAMPrompt | |
fastsam_lib_imported = True | |
print("fastsam library imported successfully.") | |
except ImportError: | |
print("Error: 'fastsam' library not found or import failed.") | |
print("Please ensure 'fastsam' is installed correctly (pip install fastsam).") | |
fastsam_lib_imported = False | |
except Exception as e: | |
print(f"An unexpected error occurred during fastsam import: {e}") | |
fastsam_lib_imported = False | |
return fastsam_lib_imported | |
def download_fastsam_weights(): | |
if not os.path.exists(FASTSAM_CHECKPOINT): | |
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...") | |
try: | |
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT) | |
print("FastSAM weights downloaded.") | |
except Exception as e: | |
print(f"Error downloading FastSAM weights: {e}") | |
print("Please ensure the URL is correct and reachable, or manually place the weights file.") | |
# Attempt to remove partially downloaded file if exists | |
if os.path.exists(FASTSAM_CHECKPOINT): | |
try: | |
os.remove(FASTSAM_CHECKPOINT) | |
except OSError: | |
pass # Ignore removal errors | |
return False | |
return os.path.exists(FASTSAM_CHECKPOINT) | |
def load_fastsam_model(): | |
global fastsam_model | |
if fastsam_model is None: | |
if not check_and_import_fastsam(): # Check import first | |
print("Cannot load FastSAM model because the library couldn't be imported.") | |
return # Exit if import failed | |
if download_fastsam_weights(): # Check download/existence second | |
try: | |
# FastSAM class should be available via globals() now | |
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...") | |
fastsam_model = FastSAM(FASTSAM_CHECKPOINT) | |
print(f"FastSAM model loaded.") # Device handled internally by FastSAM | |
except Exception as e: | |
print(f"Error loading FastSAM model: {e}") | |
traceback.print_exc() | |
else: | |
print("FastSAM weights not found or download failed. Cannot load model.") | |
# --- Processing Functions --- | |
# CLIP Zero-Shot Classification Function | |
def run_clip_zero_shot(image: Image.Image, text_labels: str): | |
if clip_model is None or clip_processor is None: | |
load_clip_model() # Attempt to load if not already loaded | |
if clip_model is None: | |
return "Error: CLIP Model not loaded. Check logs.", None | |
if image is None: | |
return "Please upload an image.", None # Return None for the image display | |
if not text_labels: | |
# Return empty results but display the uploaded image | |
return {}, image | |
labels = [label.strip() for label in text_labels.split(',') if label.strip()] # Ensure non-empty labels | |
if not labels: | |
# Return empty results but display the uploaded image | |
return {}, image | |
print(f"Running CLIP zero-shot classification with labels: {labels}") | |
try: | |
# Ensure image is RGB | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE) | |
with torch.no_grad(): | |
outputs = clip_model(**inputs) | |
logits_per_image = outputs.logits_per_image | |
probs = logits_per_image.softmax(dim=1) | |
print("CLIP processing complete.") | |
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))} | |
# Return results and the original image used for prediction | |
return confidences, image | |
except Exception as e: | |
print(f"Error during CLIP processing: {e}") | |
traceback.print_exc() | |
# Return error message and the original image | |
return f"An error occurred during CLIP: {e}", image | |
# FastSAM Segmentation Function | |
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9): | |
# Ensure model is loaded or attempt to load | |
if fastsam_model is None: | |
load_fastsam_model() | |
if fastsam_model is None: | |
# Return error message string for the image component (Gradio handles this) | |
return "Error: FastSAM Model not loaded. Check logs." | |
# Ensure library was imported | |
if not fastsam_lib_imported: | |
return "Error: FastSAM library not available. Cannot run segmentation." | |
if image_pil is None: | |
return "Please upload an image." | |
print("Running FastSAM segmentation...") | |
try: | |
# Ensure image is RGB | |
if image_pil.mode != "RGB": | |
image_pil = image_pil.convert("RGB") | |
image_np_rgb = np.array(image_pil) | |
# Run FastSAM inference | |
everything_results = fastsam_model( | |
image_np_rgb, | |
device=DEVICE, | |
retina_masks=True, | |
imgsz=640, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
) | |
# FastSAMPrompt should be available via globals() if import succeeded | |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE) | |
ann = prompt_process.everything_prompt() | |
print(f"FastSAM found {len(ann[0]['masks']) if ann and ann[0] and 'masks' in ann[0] else 0} masks.") | |
# --- Plotting Masks on Image --- | |
output_image = image_pil.copy() | |
if ann and ann[0] is not None and 'masks' in ann[0] and len(ann[0]['masks']) > 0: | |
masks = ann[0]['masks'].cpu().numpy() # (N, H, W) boolean | |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0)) | |
draw = ImageDraw.Draw(overlay) | |
for i in range(masks.shape[0]): | |
mask = masks[i] | |
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 128) # RGBA | |
mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L') | |
draw.bitmap((0,0), mask_image, fill=color) | |
output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB') | |
print("FastSAM processing and plotting complete.") | |
# *** FIX: Return ONLY the output image for the single Image component *** | |
return output_image | |
except NameError as ne: | |
print(f"NameError during FastSAM processing: {ne}. Was the fastsam library imported correctly?") | |
traceback.print_exc() | |
return f"A NameError occurred: {ne}. Check library import." | |
except Exception as e: | |
print(f"Error during FastSAM processing: {e}") | |
traceback.print_exc() | |
return f"An error occurred during FastSAM: {e}" | |
# --- Gradio Interface --- | |
# Pre-load models on startup (optional but good for performance) | |
print("Attempting to preload models...") | |
load_clip_model() | |
load_fastsam_model() # This will now also attempt download/check import | |
print("Preloading finished (or attempted).") | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# CLIP & FastSAM Demo") | |
gr.Markdown("Explore Zero-Shot Classification with CLIP and 'Segment Anything' with FastSAM.") | |
with gr.Tabs(): | |
# --- CLIP Tab --- | |
with gr.TabItem("CLIP Zero-Shot Classification"): | |
gr.Markdown("Upload an image and provide comma-separated candidate labels (e.g., 'cat, dog, car'). CLIP will predict the probability of the image matching each label.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
clip_input_image = gr.Image(type="pil", label="Input Image") | |
clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon, dog playing fetch") | |
clip_button = gr.Button("Run CLIP Classification", variant="primary") | |
with gr.Column(scale=1): | |
clip_output_label = gr.Label(label="Classification Probabilities") | |
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview") | |
clip_button.click( | |
run_clip_zero_shot, | |
inputs=[clip_input_image, clip_text_labels], | |
outputs=[clip_output_label, clip_output_image_display] | |
) | |
gr.Examples( | |
examples=[ | |
["examples/astronaut.jpg", "astronaut, moon, rover, mountain"], | |
["examples/dog_bike.jpg", "dog, bicycle, person, park, grass"], | |
["examples/clip_logo.png", "logo, text, graphics, abstract art"], # Added another example | |
], | |
inputs=[clip_input_image, clip_text_labels], | |
outputs=[clip_output_label, clip_output_image_display], | |
fn=run_clip_zero_shot, | |
cache_examples=False, | |
) | |
# --- FastSAM Tab --- | |
with gr.TabItem("FastSAM Segmentation"): | |
gr.Markdown("Upload an image. FastSAM will attempt to segment all objects/regions in the image.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
fastsam_input_image = gr.Image(type="pil", label="Input Image") | |
with gr.Row(): | |
fastsam_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold") | |
fastsam_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold") | |
fastsam_button = gr.Button("Run FastSAM Segmentation", variant="primary") | |
with gr.Column(scale=1): | |
fastsam_output_image = gr.Image(type="pil", label="Segmented Image") | |
fastsam_button.click( | |
run_fastsam_segmentation, | |
inputs=[fastsam_input_image, fastsam_conf, fastsam_iou], | |
# Output is now correctly mapped to the single component | |
outputs=[fastsam_output_image] | |
) | |
gr.Examples( | |
examples=[ | |
["examples/dogs.jpg", 0.4, 0.9], | |
["examples/fruits.jpg", 0.5, 0.8], | |
["examples/lion.jpg", 0.45, 0.9], # Added another example | |
], | |
inputs=[fastsam_input_image, fastsam_conf, fastsam_iou], | |
outputs=[fastsam_output_image], | |
fn=run_fastsam_segmentation, | |
cache_examples=False, | |
) | |
# Add example images (optional, but helpful) | |
if not os.path.exists("examples"): | |
os.makedirs("examples") | |
print("Created 'examples' directory. Attempting to download sample images...") | |
example_files = { | |
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg", # Find suitable public domain/CC image | |
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg", # Using a relevant example from HF | |
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png", | |
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg", # From Ultralytics assets | |
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg", # From Ultralytics assets | |
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg" | |
} | |
for filename, url in example_files.items(): | |
filepath = os.path.join("examples", filename) | |
if not os.path.exists(filepath): | |
try: | |
print(f"Downloading {filename}...") | |
wget.download(url, filepath) | |
except Exception as e: | |
print(f"Could not download {filename} from {url}: {e}") | |
print("Example image download attempt finished.") | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
# share=True is primarily for local testing to get a public link. | |
# Not needed/used when deploying on Hugging Face Spaces. | |
# debug=True is helpful for development. Set to False for production. | |
demo.launch(debug=True) |