Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,11 +7,12 @@ import random
|
|
7 |
import os
|
8 |
import wget
|
9 |
import traceback
|
|
|
10 |
|
11 |
# --- Configuration & Model Loading ---
|
12 |
|
13 |
# Device Selection with fallback
|
14 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
print(f"Using device: {DEVICE}")
|
16 |
|
17 |
# --- CLIP Setup ---
|
@@ -28,7 +29,7 @@ def load_clip_model():
|
|
28 |
print("CLIP processor loaded.")
|
29 |
except Exception as e:
|
30 |
print(f"Error loading CLIP processor: {e}")
|
31 |
-
traceback.print_exc()
|
32 |
return False
|
33 |
if clip_model is None:
|
34 |
try:
|
@@ -37,7 +38,7 @@ def load_clip_model():
|
|
37 |
print(f"CLIP model loaded to {DEVICE}.")
|
38 |
except Exception as e:
|
39 |
print(f"Error loading CLIP model: {e}")
|
40 |
-
traceback.print_exc()
|
41 |
return False
|
42 |
return True
|
43 |
|
@@ -51,17 +52,37 @@ FastSAM = None # Define placeholders
|
|
51 |
FastSAMPrompt = None # Define placeholders
|
52 |
|
53 |
def check_and_import_fastsam():
|
54 |
-
global fastsam_lib_imported, FastSAM, FastSAMPrompt
|
55 |
if not fastsam_lib_imported:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
try:
|
57 |
-
|
58 |
-
FastSAM
|
59 |
-
|
|
|
60 |
fastsam_lib_imported = True
|
61 |
print("fastsam library imported successfully.")
|
62 |
except ImportError as e:
|
63 |
-
print(
|
64 |
-
print(
|
|
|
|
|
|
|
|
|
|
|
65 |
fastsam_lib_imported = False
|
66 |
except Exception as e:
|
67 |
print(f"Unexpected error during fastsam import: {e}")
|
@@ -72,12 +93,20 @@ def check_and_import_fastsam():
|
|
72 |
def download_fastsam_weights(retries=3):
|
73 |
if not os.path.exists(FASTSAM_CHECKPOINT):
|
74 |
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
for attempt in range(retries):
|
76 |
try:
|
77 |
-
# Ensure the directory exists if FASTSAM_CHECKPOINT includes a path
|
78 |
-
os.makedirs(os.path.dirname(FASTSAM_CHECKPOINT) or '.', exist_ok=True)
|
79 |
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
|
80 |
-
print("FastSAM weights downloaded.")
|
81 |
return True # Return True on successful download
|
82 |
except Exception as e:
|
83 |
print(f"Attempt {attempt + 1}/{retries} failed to download FastSAM weights: {e}")
|
@@ -89,48 +118,53 @@ def download_fastsam_weights(retries=3):
|
|
89 |
if attempt + 1 == retries:
|
90 |
print("Failed to download weights after all attempts.")
|
91 |
return False
|
92 |
-
return False # Should not be reached if loop completes
|
93 |
else:
|
94 |
-
print("FastSAM weights already
|
95 |
return True # Weights exist
|
96 |
|
97 |
def load_fastsam_model():
|
98 |
global fastsam_model
|
99 |
if fastsam_model is None:
|
|
|
100 |
if not check_and_import_fastsam():
|
101 |
print("Cannot load FastSAM model due to library import failure.")
|
102 |
return False
|
103 |
-
if download_fastsam_weights():
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
print("FastSAM weights
|
|
|
|
|
123 |
return False
|
124 |
# Model already loaded
|
|
|
125 |
return True
|
126 |
|
127 |
# --- Processing Functions ---
|
128 |
|
129 |
def run_clip_zero_shot(image: Image.Image, text_labels: str):
|
130 |
-
#
|
|
|
|
|
131 |
if not isinstance(image, Image.Image):
|
132 |
-
print(f"CLIP input is not a PIL Image, type: {type(image)}")
|
133 |
-
# Try to convert if it's a numpy array (common from Gradio)
|
134 |
if isinstance(image, np.ndarray):
|
135 |
try:
|
136 |
image = Image.fromarray(image)
|
@@ -141,18 +175,18 @@ def run_clip_zero_shot(image: Image.Image, text_labels: str):
|
|
141 |
else:
|
142 |
return "Error: Please provide a valid image.", None
|
143 |
|
|
|
144 |
if clip_model is None or clip_processor is None:
|
145 |
if not load_clip_model():
|
146 |
-
# Return None for the image part on critical error
|
147 |
return "Error: CLIP Model could not be loaded.", None
|
|
|
|
|
148 |
if not text_labels:
|
149 |
-
# Return empty dict and original image if no labels
|
150 |
-
return {}, image
|
151 |
|
152 |
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
|
153 |
if not labels:
|
154 |
-
# Return empty dict and original image if no valid labels
|
155 |
-
return {}, image
|
156 |
|
157 |
print(f"Running CLIP zero-shot classification with labels: {labels}")
|
158 |
try:
|
@@ -164,46 +198,42 @@ def run_clip_zero_shot(image: Image.Image, text_labels: str):
|
|
164 |
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
|
165 |
with torch.no_grad():
|
166 |
outputs = clip_model(**inputs)
|
167 |
-
|
168 |
-
|
169 |
-
probs = logits_per_image.softmax(dim=1) # Softmax over labels
|
170 |
|
171 |
-
# Create confidences dictionary
|
172 |
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
|
173 |
print(f"CLIP Confidences: {confidences}")
|
174 |
-
# Return confidences and the original (potentially converted) image
|
175 |
return confidences, image
|
|
|
176 |
except Exception as e:
|
177 |
print(f"Error during CLIP processing: {e}")
|
178 |
traceback.print_exc()
|
179 |
-
# Return error message and None for image
|
180 |
return f"Error during CLIP processing: {e}", None
|
181 |
|
182 |
|
183 |
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
184 |
-
#
|
|
|
|
|
185 |
if not isinstance(image_pil, Image.Image):
|
186 |
-
print(f"FastSAM input is not a PIL Image, type: {type(image_pil)}")
|
187 |
if isinstance(image_pil, np.ndarray):
|
188 |
try:
|
189 |
image_pil = Image.fromarray(image_pil)
|
190 |
print("Converted numpy input to PIL Image for FastSAM.")
|
191 |
except Exception as e:
|
192 |
print(f"Failed to convert numpy array to PIL Image: {e}")
|
193 |
-
|
194 |
-
return None, "Error: Invalid image input format." # Return tuple for consistency
|
195 |
else:
|
196 |
-
|
197 |
-
return None, "Error: Please provide a valid image." # Return tuple
|
198 |
|
199 |
-
#
|
200 |
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
|
201 |
-
# Return
|
202 |
-
return None, "Error: FastSAM not loaded or library unavailable."
|
203 |
|
204 |
print(f"Running FastSAM 'segment everything' with conf={conf_threshold}, iou={iou_threshold}...")
|
205 |
-
output_image = None
|
206 |
-
status_message = "Processing..."
|
207 |
|
208 |
try:
|
209 |
# Ensure image is RGB
|
@@ -213,42 +243,31 @@ def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4
|
|
213 |
else:
|
214 |
image_pil_rgb = image_pil
|
215 |
|
216 |
-
# Convert PIL Image to NumPy array (RGB)
|
217 |
image_np_rgb = np.array(image_pil_rgb)
|
218 |
print(f"Input image shape for FastSAM: {image_np_rgb.shape}")
|
219 |
|
220 |
# Run FastSAM model
|
221 |
-
# Make sure the arguments match what FastSAM expects
|
222 |
everything_results = fastsam_model(
|
223 |
-
image_np_rgb,
|
224 |
-
|
225 |
-
retina_masks=True,
|
226 |
-
imgsz=640, # Or another size FastSAM supports
|
227 |
-
conf=conf_threshold,
|
228 |
-
iou=iou_threshold,
|
229 |
-
verbose=True # Keep verbose for debugging
|
230 |
)
|
231 |
|
232 |
-
# Check
|
|
|
233 |
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
|
234 |
-
print("FastSAM model returned None or empty results.")
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
print(f"Type of everything_results: {type(everything_results)}")
|
240 |
-
print(f"Length of everything_results: {len(everything_results)}")
|
241 |
-
if len(everything_results) > 0:
|
242 |
-
print(f"Type of first element: {type(everything_results[0])}")
|
243 |
-
# Try to access potential attributes like 'masks' if it's an object
|
244 |
-
if hasattr(everything_results[0], 'masks') and everything_results[0].masks is not None:
|
245 |
-
print(f"Masks found in results object, shape: {everything_results[0].masks.data.shape}")
|
246 |
-
else:
|
247 |
-
print("First result element does not have 'masks' attribute or it's None.")
|
248 |
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
-
#
|
251 |
-
# Ensure FastSAMPrompt class is available
|
252 |
if FastSAMPrompt is None:
|
253 |
print("FastSAMPrompt class is not available.")
|
254 |
return image_pil, "Error: FastSAMPrompt class not loaded."
|
@@ -256,89 +275,83 @@ def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4
|
|
256 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
257 |
ann = prompt_process.everything_prompt() # Get all annotations
|
258 |
|
259 |
-
# Check annotation format -
|
260 |
-
# Assuming 'ann' is a list and the first element is a dictionary containing masks
|
261 |
masks = None
|
|
|
262 |
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
|
263 |
mask_tensor = ann[0]['masks']
|
264 |
-
if mask_tensor is not None and mask_tensor.numel() > 0:
|
265 |
masks = mask_tensor.cpu().numpy()
|
266 |
print(f"Found {len(masks)} masks with shape: {masks.shape}")
|
267 |
else:
|
268 |
-
print("Annotation 'masks' tensor is None or empty.")
|
269 |
else:
|
270 |
print(f"No masks found or annotation format unexpected. ann type: {type(ann)}")
|
271 |
-
if isinstance(ann, list) and len(ann) > 0:
|
272 |
-
print(f"First element of ann: {ann[0]}")
|
273 |
-
|
274 |
|
275 |
-
# Prepare output image
|
276 |
output_image = image_pil.copy()
|
277 |
|
278 |
# Draw masks if found
|
279 |
if masks is not None and len(masks) > 0:
|
280 |
-
# Ensure output_image is RGBA for compositing
|
281 |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
282 |
draw = ImageDraw.Draw(overlay)
|
283 |
-
|
284 |
for i, mask in enumerate(masks):
|
285 |
-
|
286 |
-
binary_mask = (mask > 0) # Use threshold 0 for binary mask from FastSAM output
|
287 |
mask_uint8 = binary_mask.astype(np.uint8) * 255
|
288 |
-
if mask_uint8.max() == 0: # Skip empty masks
|
289 |
-
# print(f"Skipping empty mask {i}")
|
290 |
-
continue
|
291 |
|
292 |
-
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
|
293 |
try:
|
294 |
-
mask_image = Image.fromarray(mask_uint8, mode='L')
|
295 |
-
# Draw the mask onto the overlay
|
296 |
draw.bitmap((0, 0), mask_image, fill=color)
|
|
|
297 |
except Exception as draw_err:
|
298 |
print(f"Error drawing mask {i}: {draw_err}")
|
299 |
traceback.print_exc()
|
300 |
-
continue # Skip this mask
|
301 |
-
|
302 |
-
# Composite the overlay onto the image
|
303 |
-
try:
|
304 |
-
output_image_rgba = output_image.convert('RGBA')
|
305 |
-
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
|
306 |
-
output_image = output_image_composited.convert('RGB') # Convert back to RGB for Gradio
|
307 |
-
status_message = f"Segmentation complete. Found {len(masks)} masks."
|
308 |
-
print("Mask drawing and compositing finished.")
|
309 |
-
except Exception as comp_err:
|
310 |
-
print(f"Error during alpha compositing: {comp_err}")
|
311 |
-
traceback.print_exc()
|
312 |
-
output_image = image_pil # Fallback to original image
|
313 |
-
status_message = "Error during mask visualization."
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
else:
|
316 |
print("No masks detected or processed for 'segment everything' mode.")
|
317 |
status_message = "No segments found or processed."
|
318 |
-
output_image = image_pil # Return original image
|
319 |
|
320 |
# Save for debugging before returning
|
321 |
if output_image:
|
322 |
try:
|
323 |
-
|
324 |
-
output_image.save(debug_path)
|
325 |
-
print(f"Saved debug output to {debug_path}")
|
326 |
except Exception as save_err:
|
327 |
print(f"Failed to save debug image: {save_err}")
|
328 |
|
329 |
-
return output_image, status_message
|
330 |
|
331 |
except Exception as e:
|
332 |
print(f"Error during FastSAM 'everything' processing: {e}")
|
333 |
traceback.print_exc()
|
334 |
-
# Return original image and error
|
335 |
-
return image_pil, f"Error during processing: {e}"
|
336 |
|
337 |
|
338 |
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
339 |
-
|
|
|
|
|
340 |
if not isinstance(image_pil, Image.Image):
|
341 |
-
print(f"FastSAM Text input is not a PIL Image, type: {type(image_pil)}")
|
342 |
if isinstance(image_pil, np.ndarray):
|
343 |
try:
|
344 |
image_pil = Image.fromarray(image_pil)
|
@@ -349,9 +362,9 @@ def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, co
|
|
349 |
else:
|
350 |
return None, "Error: Please provide a valid image."
|
351 |
|
352 |
-
#
|
353 |
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
|
354 |
-
return image_pil, "Error: FastSAM
|
355 |
if not text_prompts:
|
356 |
return image_pil, "Please enter text prompts (e.g., 'person, dog')."
|
357 |
|
@@ -376,14 +389,13 @@ def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, co
|
|
376 |
|
377 |
# Run FastSAM once to get all potential segments
|
378 |
everything_results = fastsam_model(
|
379 |
-
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
|
380 |
-
conf=conf_threshold, iou=iou_threshold, verbose=
|
381 |
)
|
382 |
|
383 |
-
# Check results
|
384 |
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
|
385 |
print("FastSAM model returned None or empty results for text prompt base.")
|
386 |
-
return image_pil, "FastSAM did not return base results."
|
387 |
|
388 |
# Initialize FastSAMPrompt
|
389 |
if FastSAMPrompt is None:
|
@@ -392,33 +404,30 @@ def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, co
|
|
392 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
393 |
|
394 |
all_matching_masks = []
|
395 |
-
found_prompts_details = []
|
396 |
|
397 |
# Process each text prompt
|
398 |
for text in prompts:
|
399 |
print(f" Processing prompt: '{text}'")
|
400 |
-
# Get annotation for the specific text prompt
|
401 |
ann = prompt_process.text_prompt(text=text)
|
402 |
|
403 |
-
# Check annotation format and extract masks
|
404 |
current_masks = None
|
405 |
num_found = 0
|
406 |
-
#
|
407 |
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
|
408 |
mask_tensor = ann[0]['masks']
|
409 |
-
if mask_tensor is not None and mask_tensor.numel() > 0:
|
410 |
current_masks = mask_tensor.cpu().numpy()
|
411 |
num_found = len(current_masks)
|
412 |
print(f" Found {num_found} mask(s) for '{text}'. Shape: {current_masks.shape}")
|
413 |
-
all_matching_masks.extend(current_masks) # Add found masks
|
414 |
else:
|
415 |
-
print(f" Annotation 'masks' tensor is None or empty for '{text}'.")
|
416 |
else:
|
417 |
print(f" No masks found or annotation format unexpected for '{text}'. ann type: {type(ann)}")
|
418 |
-
if isinstance(ann, list) and len(ann) > 0:
|
419 |
-
print(f" First element of ann for '{text}': {ann[0]}")
|
420 |
|
421 |
-
found_prompts_details.append(f"{text} ({num_found})")
|
422 |
|
423 |
# Prepare output image
|
424 |
output_image = image_pil.copy()
|
@@ -427,50 +436,49 @@ def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, co
|
|
427 |
# Draw all collected masks if any were found
|
428 |
if all_matching_masks:
|
429 |
print(f"Total masks collected across all prompts: {len(all_matching_masks)}")
|
430 |
-
# Stack masks if needed (optional, can draw one by one)
|
431 |
-
# masks_np = np.stack(all_matching_masks, axis=0)
|
432 |
-
# print(f"Total masks stacked shape: {masks_np.shape}")
|
433 |
-
|
434 |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
435 |
draw = ImageDraw.Draw(overlay)
|
|
|
436 |
|
437 |
-
for i, mask in enumerate(all_matching_masks):
|
438 |
binary_mask = (mask > 0)
|
439 |
mask_uint8 = binary_mask.astype(np.uint8) * 255
|
440 |
-
if mask_uint8.max() == 0:
|
441 |
-
continue # Skip empty masks
|
442 |
|
443 |
-
# Assign a unique color per mask or per prompt (using random here)
|
444 |
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
|
445 |
try:
|
446 |
mask_image = Image.fromarray(mask_uint8, mode='L')
|
447 |
draw.bitmap((0, 0), mask_image, fill=color)
|
|
|
448 |
except Exception as draw_err:
|
449 |
print(f"Error drawing collected mask {i}: {draw_err}")
|
450 |
traceback.print_exc()
|
451 |
-
continue
|
452 |
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
else:
|
465 |
print("No matching masks found for any text prompt.")
|
466 |
-
#
|
467 |
|
468 |
# Save for debugging
|
469 |
if output_image:
|
470 |
try:
|
471 |
-
|
472 |
-
output_image.save(debug_path)
|
473 |
-
print(f"Saved debug output to {debug_path}")
|
474 |
except Exception as save_err:
|
475 |
print(f"Failed to save debug image: {save_err}")
|
476 |
|
@@ -479,76 +487,180 @@ def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, co
|
|
479 |
except Exception as e:
|
480 |
print(f"Error during FastSAM text-prompted processing: {e}")
|
481 |
traceback.print_exc()
|
482 |
-
# Return original image and error message
|
483 |
return image_pil, f"Error during processing: {e}"
|
484 |
|
485 |
-
# ---
|
486 |
-
|
487 |
print("Attempting to preload models...")
|
488 |
-
load_clip_model()
|
489 |
-
load_fastsam_model()
|
490 |
-
print("Preloading finished (check logs above for errors).")
|
491 |
|
492 |
|
493 |
# --- Gradio Interface Definition ---
|
494 |
-
|
495 |
-
|
496 |
-
# --- Gradio Interface ---
|
497 |
-
# ... (imports and functions) ...
|
498 |
-
|
499 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo: # START of the block
|
500 |
gr.Markdown("# CLIP & FastSAM Demo")
|
501 |
-
|
|
|
|
|
|
|
|
|
502 |
|
503 |
with gr.Tabs():
|
|
|
504 |
with gr.TabItem("CLIP Zero-Shot Classification"):
|
505 |
-
gr.Markdown("Upload an image and provide comma-separated labels
|
506 |
with gr.Row():
|
507 |
with gr.Column(scale=1):
|
|
|
508 |
clip_input_image = gr.Image(type="pil", label="Input Image")
|
509 |
-
clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon")
|
510 |
clip_button = gr.Button("Run CLIP Classification", variant="primary")
|
511 |
with gr.Column(scale=1):
|
512 |
clip_output_label = gr.Label(label="Classification Probabilities")
|
513 |
-
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview")
|
514 |
|
515 |
-
#
|
516 |
clip_button.click(
|
517 |
run_clip_zero_shot,
|
518 |
inputs=[clip_input_image, clip_text_labels],
|
519 |
outputs=[clip_output_label, clip_output_image_display]
|
520 |
)
|
521 |
-
# ... CLIP examples ...
|
522 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
523 |
with gr.TabItem("FastSAM Segment Everything"):
|
524 |
-
|
525 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
|
527 |
-
#
|
528 |
fastsam_button_all.click(
|
529 |
run_fastsam_segmentation,
|
530 |
-
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], # Correct list
|
531 |
outputs=[fastsam_output_image_all, fastsam_status_all]
|
532 |
)
|
533 |
-
# ... FastSAM Everything examples ...
|
534 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
with gr.TabItem("Text-Prompted Segmentation"):
|
536 |
-
|
537 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
|
539 |
-
#
|
540 |
prompt_button.click(
|
541 |
run_text_prompted_segmentation,
|
542 |
-
inputs=[
|
543 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
)
|
545 |
-
# ... Text-Prompted examples ...
|
546 |
|
547 |
-
#
|
548 |
-
#
|
549 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
|
551 |
-
# --- Launch App
|
552 |
if __name__ == "__main__":
|
|
|
553 |
print("Launching Gradio Demo...")
|
554 |
-
|
|
|
|
|
|
|
|
7 |
import os
|
8 |
import wget
|
9 |
import traceback
|
10 |
+
import sys # Import sys for checking modules
|
11 |
|
12 |
# --- Configuration & Model Loading ---
|
13 |
|
14 |
# Device Selection with fallback
|
15 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
print(f"Using device: {DEVICE}")
|
17 |
|
18 |
# --- CLIP Setup ---
|
|
|
29 |
print("CLIP processor loaded.")
|
30 |
except Exception as e:
|
31 |
print(f"Error loading CLIP processor: {e}")
|
32 |
+
traceback.print_exc()
|
33 |
return False
|
34 |
if clip_model is None:
|
35 |
try:
|
|
|
38 |
print(f"CLIP model loaded to {DEVICE}.")
|
39 |
except Exception as e:
|
40 |
print(f"Error loading CLIP model: {e}")
|
41 |
+
traceback.print_exc()
|
42 |
return False
|
43 |
return True
|
44 |
|
|
|
52 |
FastSAMPrompt = None # Define placeholders
|
53 |
|
54 |
def check_and_import_fastsam():
|
55 |
+
global fastsam_lib_imported, FastSAM, FastSAMPrompt
|
56 |
if not fastsam_lib_imported:
|
57 |
+
# Check if ultralytics is installed first, as it's a dependency
|
58 |
+
if 'ultralytics' not in sys.modules:
|
59 |
+
try:
|
60 |
+
# Try importing to trigger potential error if not installed
|
61 |
+
import ultralytics
|
62 |
+
print("Found 'ultralytics' library.")
|
63 |
+
except ImportError:
|
64 |
+
print("\n--- ERROR ---")
|
65 |
+
print("The 'ultralytics' library (required by FastSAM) is not installed.")
|
66 |
+
print("Please install it first: pip install ultralytics")
|
67 |
+
print("---------------\n")
|
68 |
+
return False # Cannot proceed without ultralytics
|
69 |
+
|
70 |
+
# Now try importing fastsam
|
71 |
try:
|
72 |
+
# Use temporary names to avoid conflict if they exist globally somehow
|
73 |
+
from fastsam import FastSAM as FastSAM_lib, FastSAMPrompt as FastSAMPrompt_lib
|
74 |
+
FastSAM = FastSAM_lib # Assign to global placeholder
|
75 |
+
FastSAMPrompt = FastSAMPrompt_lib # Assign to global placeholder
|
76 |
fastsam_lib_imported = True
|
77 |
print("fastsam library imported successfully.")
|
78 |
except ImportError as e:
|
79 |
+
print("\n--- ERROR ---")
|
80 |
+
print("The 'fastsam' library was not found or could not be imported.")
|
81 |
+
print("Please ensure it is installed correctly:")
|
82 |
+
print(" pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git")
|
83 |
+
print(f"(ImportError: {e})")
|
84 |
+
print("Also ensure 'ultralytics' is installed: pip install ultralytics")
|
85 |
+
print("---------------\n")
|
86 |
fastsam_lib_imported = False
|
87 |
except Exception as e:
|
88 |
print(f"Unexpected error during fastsam import: {e}")
|
|
|
93 |
def download_fastsam_weights(retries=3):
|
94 |
if not os.path.exists(FASTSAM_CHECKPOINT):
|
95 |
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
|
96 |
+
# Ensure the directory exists if FASTSAM_CHECKPOINT includes a path
|
97 |
+
checkpoint_dir = os.path.dirname(FASTSAM_CHECKPOINT)
|
98 |
+
if checkpoint_dir and not os.path.exists(checkpoint_dir):
|
99 |
+
try:
|
100 |
+
os.makedirs(checkpoint_dir)
|
101 |
+
print(f"Created directory for weights: {checkpoint_dir}")
|
102 |
+
except OSError as e:
|
103 |
+
print(f"Error creating directory {checkpoint_dir}: {e}")
|
104 |
+
return False
|
105 |
+
|
106 |
for attempt in range(retries):
|
107 |
try:
|
|
|
|
|
108 |
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
|
109 |
+
print("FastSAM weights downloaded successfully.")
|
110 |
return True # Return True on successful download
|
111 |
except Exception as e:
|
112 |
print(f"Attempt {attempt + 1}/{retries} failed to download FastSAM weights: {e}")
|
|
|
118 |
if attempt + 1 == retries:
|
119 |
print("Failed to download weights after all attempts.")
|
120 |
return False
|
121 |
+
return False # Should not be reached if loop completes correctly
|
122 |
else:
|
123 |
+
print(f"FastSAM weights file '{FASTSAM_CHECKPOINT}' already exists.")
|
124 |
return True # Weights exist
|
125 |
|
126 |
def load_fastsam_model():
|
127 |
global fastsam_model
|
128 |
if fastsam_model is None:
|
129 |
+
print("Attempting to load FastSAM model...")
|
130 |
if not check_and_import_fastsam():
|
131 |
print("Cannot load FastSAM model due to library import failure.")
|
132 |
return False
|
133 |
+
if not download_fastsam_weights():
|
134 |
+
print("Cannot load FastSAM model because weights are missing or download failed.")
|
135 |
+
return False
|
136 |
+
|
137 |
+
# Ensure FastSAM class is available (double check after import attempt)
|
138 |
+
if FastSAM is None:
|
139 |
+
print("FastSAM class reference is None, cannot instantiate model.")
|
140 |
+
return False
|
141 |
+
|
142 |
+
try:
|
143 |
+
print(f"Loading FastSAM model from checkpoint: {FASTSAM_CHECKPOINT}...")
|
144 |
+
# Instantiate the imported FastSAM class
|
145 |
+
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
|
146 |
+
# Note: FastSAM typically handles device placement internally based on constructor args or method calls.
|
147 |
+
# If you face device issues, check FastSAM's documentation for explicit device moving.
|
148 |
+
# Example: Some models might need fastsam_model.model.to(DEVICE) - check structure.
|
149 |
+
print("FastSAM model loaded successfully.")
|
150 |
+
return True
|
151 |
+
except Exception as e:
|
152 |
+
print(f"Error loading FastSAM model weights or initializing: {e}")
|
153 |
+
traceback.print_exc()
|
154 |
+
fastsam_model = None # Ensure model is None if loading failed
|
155 |
return False
|
156 |
# Model already loaded
|
157 |
+
# print("FastSAM model already loaded.") # Optional: uncomment for debugging reuse
|
158 |
return True
|
159 |
|
160 |
# --- Processing Functions ---
|
161 |
|
162 |
def run_clip_zero_shot(image: Image.Image, text_labels: str):
|
163 |
+
# Input validation
|
164 |
+
if image is None:
|
165 |
+
return "Error: Please upload an image.", None # Return None for image component
|
166 |
if not isinstance(image, Image.Image):
|
167 |
+
print(f"CLIP input is not a PIL Image, type: {type(image)}. Attempting conversion.")
|
|
|
168 |
if isinstance(image, np.ndarray):
|
169 |
try:
|
170 |
image = Image.fromarray(image)
|
|
|
175 |
else:
|
176 |
return "Error: Please provide a valid image.", None
|
177 |
|
178 |
+
# Model loading check
|
179 |
if clip_model is None or clip_processor is None:
|
180 |
if not load_clip_model():
|
|
|
181 |
return "Error: CLIP Model could not be loaded.", None
|
182 |
+
|
183 |
+
# Label check
|
184 |
if not text_labels:
|
185 |
+
return {}, image # Return empty dict and original image if no labels
|
|
|
186 |
|
187 |
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
|
188 |
if not labels:
|
189 |
+
return {}, image # Return empty dict and original image if no valid labels
|
|
|
190 |
|
191 |
print(f"Running CLIP zero-shot classification with labels: {labels}")
|
192 |
try:
|
|
|
198 |
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
|
199 |
with torch.no_grad():
|
200 |
outputs = clip_model(**inputs)
|
201 |
+
logits_per_image = outputs.logits_per_image
|
202 |
+
probs = logits_per_image.softmax(dim=1)
|
|
|
203 |
|
|
|
204 |
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
|
205 |
print(f"CLIP Confidences: {confidences}")
|
|
|
206 |
return confidences, image
|
207 |
+
|
208 |
except Exception as e:
|
209 |
print(f"Error during CLIP processing: {e}")
|
210 |
traceback.print_exc()
|
|
|
211 |
return f"Error during CLIP processing: {e}", None
|
212 |
|
213 |
|
214 |
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
215 |
+
# Input validation
|
216 |
+
if image_pil is None:
|
217 |
+
return None, "Error: Please upload an image."
|
218 |
if not isinstance(image_pil, Image.Image):
|
219 |
+
print(f"FastSAM input is not a PIL Image, type: {type(image_pil)}. Attempting conversion.")
|
220 |
if isinstance(image_pil, np.ndarray):
|
221 |
try:
|
222 |
image_pil = Image.fromarray(image_pil)
|
223 |
print("Converted numpy input to PIL Image for FastSAM.")
|
224 |
except Exception as e:
|
225 |
print(f"Failed to convert numpy array to PIL Image: {e}")
|
226 |
+
return None, "Error: Invalid image input format."
|
|
|
227 |
else:
|
228 |
+
return None, "Error: Please provide a valid image."
|
|
|
229 |
|
230 |
+
# Model loading check
|
231 |
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
|
232 |
+
return image_pil, "Error: FastSAM model/library not ready. Check logs." # Return original image if model failed
|
|
|
233 |
|
234 |
print(f"Running FastSAM 'segment everything' with conf={conf_threshold}, iou={iou_threshold}...")
|
235 |
+
output_image = None
|
236 |
+
status_message = "Processing..."
|
237 |
|
238 |
try:
|
239 |
# Ensure image is RGB
|
|
|
243 |
else:
|
244 |
image_pil_rgb = image_pil
|
245 |
|
|
|
246 |
image_np_rgb = np.array(image_pil_rgb)
|
247 |
print(f"Input image shape for FastSAM: {image_np_rgb.shape}")
|
248 |
|
249 |
# Run FastSAM model
|
|
|
250 |
everything_results = fastsam_model(
|
251 |
+
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, # Adjust imgsz if needed
|
252 |
+
conf=conf_threshold, iou=iou_threshold, verbose=False # Set verbose=False for cleaner logs unless debugging
|
|
|
|
|
|
|
|
|
|
|
253 |
)
|
254 |
|
255 |
+
# Check results type and content (FastSAM results format might vary)
|
256 |
+
# Typically a list of result objects, or similar structure
|
257 |
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
|
258 |
+
print("FastSAM model returned None or empty results list.")
|
259 |
+
return image_pil, "FastSAM processing returned no results."
|
260 |
+
|
261 |
+
# Assuming the first result object contains the relevant data
|
262 |
+
first_result = everything_results[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
+
# --- IMPORTANT: Inspect the 'first_result' object ---
|
265 |
+
# Use print(dir(first_result)), print(type(first_result)) etc. if unsure
|
266 |
+
# Common attributes might be .masks, .boxes, .names
|
267 |
+
# print(f"Type of first_result: {type(first_result)}")
|
268 |
+
# print(f"Attributes of first_result: {dir(first_result)}")
|
269 |
|
270 |
+
# Initialize FastSAMPrompt
|
|
|
271 |
if FastSAMPrompt is None:
|
272 |
print("FastSAMPrompt class is not available.")
|
273 |
return image_pil, "Error: FastSAMPrompt class not loaded."
|
|
|
275 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
276 |
ann = prompt_process.everything_prompt() # Get all annotations
|
277 |
|
278 |
+
# Check annotation format - Adapt based on actual FastSAM/FastSAMPrompt output
|
|
|
279 |
masks = None
|
280 |
+
# Expected format: list containing a dict with 'masks' tensor
|
281 |
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
|
282 |
mask_tensor = ann[0]['masks']
|
283 |
+
if mask_tensor is not None and isinstance(mask_tensor, torch.Tensor) and mask_tensor.numel() > 0:
|
284 |
masks = mask_tensor.cpu().numpy()
|
285 |
print(f"Found {len(masks)} masks with shape: {masks.shape}")
|
286 |
else:
|
287 |
+
print("Annotation 'masks' tensor is None, not a Tensor, or empty.")
|
288 |
else:
|
289 |
print(f"No masks found or annotation format unexpected. ann type: {type(ann)}")
|
290 |
+
if isinstance(ann, list) and len(ann) > 0: print(f"First element of ann: {ann[0]}")
|
|
|
|
|
291 |
|
292 |
+
# Prepare output image
|
293 |
output_image = image_pil.copy()
|
294 |
|
295 |
# Draw masks if found
|
296 |
if masks is not None and len(masks) > 0:
|
|
|
297 |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
298 |
draw = ImageDraw.Draw(overlay)
|
299 |
+
valid_masks_drawn = 0
|
300 |
for i, mask in enumerate(masks):
|
301 |
+
binary_mask = (mask > 0) # Use threshold 0 for binary mask
|
|
|
302 |
mask_uint8 = binary_mask.astype(np.uint8) * 255
|
303 |
+
if mask_uint8.max() == 0: continue # Skip empty masks
|
|
|
|
|
304 |
|
305 |
+
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
|
306 |
try:
|
307 |
+
mask_image = Image.fromarray(mask_uint8, mode='L')
|
|
|
308 |
draw.bitmap((0, 0), mask_image, fill=color)
|
309 |
+
valid_masks_drawn += 1
|
310 |
except Exception as draw_err:
|
311 |
print(f"Error drawing mask {i}: {draw_err}")
|
312 |
traceback.print_exc()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
+
if valid_masks_drawn > 0:
|
315 |
+
try:
|
316 |
+
output_image_rgba = output_image.convert('RGBA')
|
317 |
+
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
|
318 |
+
output_image = output_image_composited.convert('RGB')
|
319 |
+
status_message = f"Segmentation complete. Found and drew {valid_masks_drawn} masks."
|
320 |
+
print("Mask drawing and compositing finished.")
|
321 |
+
except Exception as comp_err:
|
322 |
+
print(f"Error during alpha compositing: {comp_err}")
|
323 |
+
traceback.print_exc()
|
324 |
+
output_image = image_pil # Fallback
|
325 |
+
status_message = f"Found {valid_masks_drawn} masks, but error during visualization."
|
326 |
+
else:
|
327 |
+
status_message = f"Found {len(masks)} masks initially, but none were valid for drawing."
|
328 |
+
output_image = image_pil # Return original if no valid masks drawn
|
329 |
else:
|
330 |
print("No masks detected or processed for 'segment everything' mode.")
|
331 |
status_message = "No segments found or processed."
|
332 |
+
output_image = image_pil # Return original image
|
333 |
|
334 |
# Save for debugging before returning
|
335 |
if output_image:
|
336 |
try:
|
337 |
+
output_image.save("debug_fastsam_everything_output.png")
|
|
|
|
|
338 |
except Exception as save_err:
|
339 |
print(f"Failed to save debug image: {save_err}")
|
340 |
|
341 |
+
return output_image, status_message
|
342 |
|
343 |
except Exception as e:
|
344 |
print(f"Error during FastSAM 'everything' processing: {e}")
|
345 |
traceback.print_exc()
|
346 |
+
return image_pil, f"Error during processing: {e}" # Return original image and error
|
|
|
347 |
|
348 |
|
349 |
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
350 |
+
# Input validation
|
351 |
+
if image_pil is None:
|
352 |
+
return None, "Error: Please upload an image."
|
353 |
if not isinstance(image_pil, Image.Image):
|
354 |
+
print(f"FastSAM Text input is not a PIL Image, type: {type(image_pil)}. Attempting conversion.")
|
355 |
if isinstance(image_pil, np.ndarray):
|
356 |
try:
|
357 |
image_pil = Image.fromarray(image_pil)
|
|
|
362 |
else:
|
363 |
return None, "Error: Please provide a valid image."
|
364 |
|
365 |
+
# Model loading check
|
366 |
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
|
367 |
+
return image_pil, "Error: FastSAM model/library not ready. Check logs."
|
368 |
if not text_prompts:
|
369 |
return image_pil, "Please enter text prompts (e.g., 'person, dog')."
|
370 |
|
|
|
389 |
|
390 |
# Run FastSAM once to get all potential segments
|
391 |
everything_results = fastsam_model(
|
392 |
+
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
|
393 |
+
conf=conf_threshold, iou=iou_threshold, verbose=False # Set verbose=False usually
|
394 |
)
|
395 |
|
|
|
396 |
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
|
397 |
print("FastSAM model returned None or empty results for text prompt base.")
|
398 |
+
return image_pil, "FastSAM did not return base results needed for text prompting."
|
399 |
|
400 |
# Initialize FastSAMPrompt
|
401 |
if FastSAMPrompt is None:
|
|
|
404 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
405 |
|
406 |
all_matching_masks = []
|
407 |
+
found_prompts_details = []
|
408 |
|
409 |
# Process each text prompt
|
410 |
for text in prompts:
|
411 |
print(f" Processing prompt: '{text}'")
|
|
|
412 |
ann = prompt_process.text_prompt(text=text)
|
413 |
|
|
|
414 |
current_masks = None
|
415 |
num_found = 0
|
416 |
+
# Check annotation format - adapt based on text_prompt output structure
|
417 |
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
|
418 |
mask_tensor = ann[0]['masks']
|
419 |
+
if mask_tensor is not None and isinstance(mask_tensor, torch.Tensor) and mask_tensor.numel() > 0:
|
420 |
current_masks = mask_tensor.cpu().numpy()
|
421 |
num_found = len(current_masks)
|
422 |
print(f" Found {num_found} mask(s) for '{text}'. Shape: {current_masks.shape}")
|
423 |
+
all_matching_masks.extend(current_masks) # Add found masks
|
424 |
else:
|
425 |
+
print(f" Annotation 'masks' tensor is None, not a Tensor, or empty for '{text}'.")
|
426 |
else:
|
427 |
print(f" No masks found or annotation format unexpected for '{text}'. ann type: {type(ann)}")
|
428 |
+
if isinstance(ann, list) and len(ann) > 0: print(f" First element of ann for '{text}': {ann[0]}")
|
|
|
429 |
|
430 |
+
found_prompts_details.append(f"{text} ({num_found})")
|
431 |
|
432 |
# Prepare output image
|
433 |
output_image = image_pil.copy()
|
|
|
436 |
# Draw all collected masks if any were found
|
437 |
if all_matching_masks:
|
438 |
print(f"Total masks collected across all prompts: {len(all_matching_masks)}")
|
|
|
|
|
|
|
|
|
439 |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
440 |
draw = ImageDraw.Draw(overlay)
|
441 |
+
valid_masks_drawn = 0
|
442 |
|
443 |
+
for i, mask in enumerate(all_matching_masks):
|
444 |
binary_mask = (mask > 0)
|
445 |
mask_uint8 = binary_mask.astype(np.uint8) * 255
|
446 |
+
if mask_uint8.max() == 0: continue
|
|
|
447 |
|
|
|
448 |
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
|
449 |
try:
|
450 |
mask_image = Image.fromarray(mask_uint8, mode='L')
|
451 |
draw.bitmap((0, 0), mask_image, fill=color)
|
452 |
+
valid_masks_drawn += 1
|
453 |
except Exception as draw_err:
|
454 |
print(f"Error drawing collected mask {i}: {draw_err}")
|
455 |
traceback.print_exc()
|
|
|
456 |
|
457 |
+
if valid_masks_drawn > 0:
|
458 |
+
try:
|
459 |
+
output_image_rgba = output_image.convert('RGBA')
|
460 |
+
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
|
461 |
+
output_image = output_image_composited.convert('RGB')
|
462 |
+
print("Text prompt mask drawing and compositing finished.")
|
463 |
+
# Append drawing status if needed
|
464 |
+
if valid_masks_drawn < len(all_matching_masks):
|
465 |
+
status_message += f" (Drew {valid_masks_drawn}/{len(all_matching_masks)} found masks)"
|
466 |
+
except Exception as comp_err:
|
467 |
+
print(f"Error during alpha compositing for text prompts: {comp_err}")
|
468 |
+
traceback.print_exc()
|
469 |
+
output_image = image_pil # Fallback
|
470 |
+
status_message += " (Error during visualization)"
|
471 |
+
else:
|
472 |
+
output_image = image_pil # Return original if no masks drawn
|
473 |
+
status_message += " (No valid masks to draw)"
|
474 |
else:
|
475 |
print("No matching masks found for any text prompt.")
|
476 |
+
output_image = image_pil # Return original image
|
477 |
|
478 |
# Save for debugging
|
479 |
if output_image:
|
480 |
try:
|
481 |
+
output_image.save("debug_fastsam_text_output.png")
|
|
|
|
|
482 |
except Exception as save_err:
|
483 |
print(f"Failed to save debug image: {save_err}")
|
484 |
|
|
|
487 |
except Exception as e:
|
488 |
print(f"Error during FastSAM text-prompted processing: {e}")
|
489 |
traceback.print_exc()
|
|
|
490 |
return image_pil, f"Error during processing: {e}"
|
491 |
|
492 |
+
# --- Preload Models ---
|
|
|
493 |
print("Attempting to preload models...")
|
494 |
+
load_clip_model()
|
495 |
+
load_fastsam_model() # Try to load FastSAM eagerly
|
496 |
+
print("Preloading finished (check logs above for success/errors).")
|
497 |
|
498 |
|
499 |
# --- Gradio Interface Definition ---
|
500 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
|
|
|
|
|
|
|
|
501 |
gr.Markdown("# CLIP & FastSAM Demo")
|
502 |
+
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")
|
503 |
+
gr.Markdown("---")
|
504 |
+
gr.Markdown("**NOTE:** Ensure required libraries are installed: `pip install --upgrade gradio torch transformers Pillow numpy wget ultralytics` and `pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git`")
|
505 |
+
gr.Markdown("---")
|
506 |
+
|
507 |
|
508 |
with gr.Tabs():
|
509 |
+
# --- CLIP Tab ---
|
510 |
with gr.TabItem("CLIP Zero-Shot Classification"):
|
511 |
+
gr.Markdown("Upload an image and provide comma-separated labels (e.g., 'cat, dog, car').")
|
512 |
with gr.Row():
|
513 |
with gr.Column(scale=1):
|
514 |
+
# Define UI elements first
|
515 |
clip_input_image = gr.Image(type="pil", label="Input Image")
|
516 |
+
clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon")
|
517 |
clip_button = gr.Button("Run CLIP Classification", variant="primary")
|
518 |
with gr.Column(scale=1):
|
519 |
clip_output_label = gr.Label(label="Classification Probabilities")
|
520 |
+
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview", interactive=False)
|
521 |
|
522 |
+
# Define the click handler AFTER elements are defined
|
523 |
clip_button.click(
|
524 |
run_clip_zero_shot,
|
525 |
inputs=[clip_input_image, clip_text_labels],
|
526 |
outputs=[clip_output_label, clip_output_image_display]
|
527 |
)
|
|
|
528 |
|
529 |
+
gr.Examples(
|
530 |
+
examples=[
|
531 |
+
["examples/astronaut.jpg", "astronaut, moon, rover"],
|
532 |
+
["examples/dog_bike.jpg", "dog, bicycle, person"],
|
533 |
+
["examples/clip_logo.png", "logo, text, graphics"],
|
534 |
+
],
|
535 |
+
inputs=[clip_input_image, clip_text_labels],
|
536 |
+
outputs=[clip_output_label, clip_output_image_display],
|
537 |
+
fn=run_clip_zero_shot,
|
538 |
+
cache_examples=False, # Keep False during debugging
|
539 |
+
)
|
540 |
+
|
541 |
+
# --- FastSAM Everything Tab ---
|
542 |
with gr.TabItem("FastSAM Segment Everything"):
|
543 |
+
gr.Markdown("Upload an image to segment all objects/regions.")
|
544 |
+
with gr.Row():
|
545 |
+
with gr.Column(scale=1):
|
546 |
+
# Define UI elements first
|
547 |
+
fastsam_input_image_all = gr.Image(type="pil", label="Input Image")
|
548 |
+
with gr.Row():
|
549 |
+
fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
|
550 |
+
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
|
551 |
+
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
|
552 |
+
with gr.Column(scale=1):
|
553 |
+
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image", interactive=False)
|
554 |
+
fastsam_status_all = gr.Textbox(label="Status", interactive=False)
|
555 |
|
556 |
+
# Define the click handler AFTER elements are defined
|
557 |
fastsam_button_all.click(
|
558 |
run_fastsam_segmentation,
|
559 |
+
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], # Correct inputs list
|
560 |
outputs=[fastsam_output_image_all, fastsam_status_all]
|
561 |
)
|
|
|
562 |
|
563 |
+
gr.Examples(
|
564 |
+
examples=[
|
565 |
+
["examples/dogs.jpg", 0.4, 0.9],
|
566 |
+
["examples/fruits.jpg", 0.5, 0.8],
|
567 |
+
["examples/lion.jpg", 0.45, 0.9],
|
568 |
+
],
|
569 |
+
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
|
570 |
+
outputs=[fastsam_output_image_all, fastsam_status_all],
|
571 |
+
fn=run_fastsam_segmentation,
|
572 |
+
cache_examples=False,
|
573 |
+
)
|
574 |
+
|
575 |
+
# --- Text-Prompted Segmentation Tab ---
|
576 |
with gr.TabItem("Text-Prompted Segmentation"):
|
577 |
+
gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
|
578 |
+
with gr.Row():
|
579 |
+
with gr.Column(scale=1):
|
580 |
+
# Define UI elements first
|
581 |
+
prompt_input_image = gr.Image(type="pil", label="Input Image")
|
582 |
+
prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch")
|
583 |
+
with gr.Row():
|
584 |
+
prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
|
585 |
+
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
|
586 |
+
prompt_button = gr.Button("Segment by Text", variant="primary")
|
587 |
+
with gr.Column(scale=1):
|
588 |
+
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation", interactive=False)
|
589 |
+
prompt_status_message = gr.Textbox(label="Status", interactive=False)
|
590 |
|
591 |
+
# Define the click handler AFTER elements are defined
|
592 |
prompt_button.click(
|
593 |
run_text_prompted_segmentation,
|
594 |
+
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], # Correct inputs list
|
595 |
+
outputs=[prompt_output_image, prompt_status_message]
|
596 |
+
)
|
597 |
+
|
598 |
+
gr.Examples(
|
599 |
+
examples=[
|
600 |
+
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
|
601 |
+
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
|
602 |
+
["examples/dogs.jpg", "dog", 0.4, 0.9],
|
603 |
+
["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
|
604 |
+
["examples/teacher.jpg", "person, glasses", 0.4, 0.9],
|
605 |
+
],
|
606 |
+
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
|
607 |
+
outputs=[prompt_output_image, prompt_status_message],
|
608 |
+
fn=run_text_prompted_segmentation,
|
609 |
+
cache_examples=False,
|
610 |
)
|
|
|
611 |
|
612 |
+
# --- Example File Download ---
|
613 |
+
# (This logic should be outside the `with gr.Blocks...` block)
|
614 |
+
if not os.path.exists("examples"):
|
615 |
+
try:
|
616 |
+
os.makedirs("examples")
|
617 |
+
print("Created 'examples' directory.")
|
618 |
+
except OSError as e:
|
619 |
+
print(f"Error creating 'examples' directory: {e}")
|
620 |
+
|
621 |
+
example_files = {
|
622 |
+
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
|
623 |
+
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
|
624 |
+
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
|
625 |
+
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
|
626 |
+
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
|
627 |
+
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
|
628 |
+
"teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600"
|
629 |
+
}
|
630 |
+
|
631 |
+
def download_example_file(filename, url, retries=3):
|
632 |
+
filepath = os.path.join("examples", filename)
|
633 |
+
if not os.path.exists(filepath):
|
634 |
+
print(f"Attempting to download {filename}...")
|
635 |
+
for attempt in range(retries):
|
636 |
+
try:
|
637 |
+
wget.download(url, filepath)
|
638 |
+
print(f"Downloaded {filename} successfully.")
|
639 |
+
return # Exit function on success
|
640 |
+
except Exception as e:
|
641 |
+
print(f"Download attempt {attempt + 1}/{retries} for {filename} failed: {e}")
|
642 |
+
if os.path.exists(filepath): # Clean up partial download
|
643 |
+
try: os.remove(filepath)
|
644 |
+
except OSError: pass
|
645 |
+
if attempt + 1 == retries:
|
646 |
+
print(f"Failed to download {filename} after {retries} attempts.")
|
647 |
+
# else: # Optional: uncomment if you want confirmation for existing files
|
648 |
+
# print(f"Example file {filename} already exists.")
|
649 |
+
|
650 |
+
# Trigger downloads if directory exists
|
651 |
+
if os.path.exists("examples"):
|
652 |
+
for filename, url in example_files.items():
|
653 |
+
download_example_file(filename, url)
|
654 |
+
print("Example file check/download process complete.")
|
655 |
+
else:
|
656 |
+
print("Skipping example download because 'examples' directory could not be created.")
|
657 |
+
|
658 |
|
659 |
+
# --- Launch App ---
|
660 |
if __name__ == "__main__":
|
661 |
+
print("-----------------------------------------")
|
662 |
print("Launching Gradio Demo...")
|
663 |
+
print("Ensure FastSAM model and weights are correctly loaded (check logs above).")
|
664 |
+
print("If FastSAM fails, check installation: pip install ultralytics && pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git")
|
665 |
+
print("-----------------------------------------")
|
666 |
+
demo.launch(debug=True) # Keep debug=True for detailed Gradio errors
|