Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoProcessor, AutoModel
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
import numpy as np
|
6 |
import random
|
@@ -12,9 +12,11 @@ import traceback # For detailed error printing
|
|
12 |
|
13 |
# Device Selection
|
14 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
15 |
print(f"Using device: {DEVICE}")
|
16 |
|
17 |
-
# --- CLIP Setup ---
|
18 |
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
|
19 |
clip_processor = None
|
20 |
clip_model = None
|
@@ -22,17 +24,26 @@ clip_model = None
|
|
22 |
def load_clip_model():
|
23 |
global clip_processor, clip_model
|
24 |
if clip_processor is None:
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
if clip_model is None:
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# --- FastSAM Setup ---
|
34 |
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
|
35 |
-
# Use the official model hub repo URL
|
36 |
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"
|
37 |
|
38 |
fastsam_model = None
|
@@ -53,6 +64,7 @@ def check_and_import_fastsam():
|
|
53 |
fastsam_lib_imported = False
|
54 |
except Exception as e:
|
55 |
print(f"An unexpected error occurred during fastsam import: {e}")
|
|
|
56 |
fastsam_lib_imported = False
|
57 |
return fastsam_lib_imported
|
58 |
|
@@ -66,168 +78,210 @@ def download_fastsam_weights():
|
|
66 |
except Exception as e:
|
67 |
print(f"Error downloading FastSAM weights: {e}")
|
68 |
print("Please ensure the URL is correct and reachable, or manually place the weights file.")
|
69 |
-
# Attempt to remove partially downloaded file if exists
|
70 |
if os.path.exists(FASTSAM_CHECKPOINT):
|
71 |
-
try:
|
72 |
-
|
73 |
-
except OSError:
|
74 |
-
pass # Ignore removal errors
|
75 |
return False
|
76 |
return os.path.exists(FASTSAM_CHECKPOINT)
|
77 |
|
78 |
def load_fastsam_model():
|
79 |
global fastsam_model
|
80 |
if fastsam_model is None:
|
81 |
-
if not check_and_import_fastsam():
|
82 |
print("Cannot load FastSAM model because the library couldn't be imported.")
|
83 |
-
return #
|
84 |
|
85 |
-
if download_fastsam_weights():
|
86 |
try:
|
87 |
-
# FastSAM class should be available via globals() now
|
88 |
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
|
89 |
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
|
90 |
-
|
|
|
|
|
|
|
91 |
except Exception as e:
|
92 |
print(f"Error loading FastSAM model: {e}")
|
93 |
traceback.print_exc()
|
94 |
else:
|
95 |
print("FastSAM weights not found or download failed. Cannot load model.")
|
|
|
96 |
|
97 |
|
98 |
# --- Processing Functions ---
|
99 |
|
|
|
100 |
# CLIP Zero-Shot Classification Function
|
101 |
def run_clip_zero_shot(image: Image.Image, text_labels: str):
|
|
|
102 |
if clip_model is None or clip_processor is None:
|
103 |
-
|
104 |
-
|
105 |
-
return "Error: CLIP Model not loaded. Check logs.", None
|
106 |
|
107 |
-
if image is None:
|
108 |
-
|
109 |
-
if not text_labels:
|
110 |
-
# Return empty results but display the uploaded image
|
111 |
-
return {}, image
|
112 |
|
113 |
-
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
|
114 |
-
if not labels:
|
115 |
-
# Return empty results but display the uploaded image
|
116 |
-
return {}, image
|
117 |
|
118 |
print(f"Running CLIP zero-shot classification with labels: {labels}")
|
119 |
-
|
120 |
try:
|
121 |
-
|
122 |
-
if image.mode != "RGB":
|
123 |
-
image = image.convert("RGB")
|
124 |
-
|
125 |
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
|
126 |
-
|
127 |
with torch.no_grad():
|
128 |
outputs = clip_model(**inputs)
|
129 |
-
|
130 |
-
probs = logits_per_image.softmax(dim=1)
|
131 |
-
|
132 |
print("CLIP processing complete.")
|
133 |
-
|
134 |
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
|
135 |
-
# Return results and the original image used for prediction
|
136 |
return confidences, image
|
137 |
-
|
138 |
except Exception as e:
|
139 |
print(f"Error during CLIP processing: {e}")
|
140 |
traceback.print_exc()
|
141 |
-
# Return error message and the original image
|
142 |
return f"An error occurred during CLIP: {e}", image
|
143 |
|
144 |
-
|
145 |
-
# FastSAM Segmentation Function
|
146 |
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
147 |
-
|
148 |
-
|
149 |
-
load_fastsam_model()
|
150 |
-
if fastsam_model is None:
|
151 |
-
# Return error message string for the image component (Gradio handles this)
|
152 |
-
return "Error: FastSAM Model not loaded. Check logs."
|
153 |
-
# Ensure library was imported
|
154 |
if not fastsam_lib_imported:
|
155 |
-
return "Error: FastSAM library not available.
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
if image_pil is None:
|
158 |
-
return "Please upload an image."
|
|
|
|
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
|
161 |
|
162 |
try:
|
163 |
-
# Ensure image is RGB
|
164 |
if image_pil.mode != "RGB":
|
165 |
image_pil = image_pil.convert("RGB")
|
166 |
-
|
167 |
image_np_rgb = np.array(image_pil)
|
168 |
|
169 |
-
# Run FastSAM
|
|
|
170 |
everything_results = fastsam_model(
|
171 |
-
image_np_rgb,
|
172 |
-
|
173 |
-
retina_masks=True,
|
174 |
-
imgsz=640,
|
175 |
-
conf=conf_threshold,
|
176 |
-
iou=iou_threshold,
|
177 |
)
|
178 |
|
179 |
-
#
|
180 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
181 |
-
ann = prompt_process.everything_prompt()
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
output_image = image_pil.copy()
|
187 |
-
|
188 |
-
masks = ann[0]['masks'].cpu().numpy() # (N, H, W) boolean
|
189 |
|
190 |
-
|
191 |
-
|
|
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 128) # RGBA
|
196 |
-
mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L')
|
197 |
-
draw.bitmap((0,0), mask_image, fill=color)
|
198 |
|
199 |
-
|
|
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
-
except NameError as ne:
|
206 |
-
print(f"NameError during FastSAM processing: {ne}. Was the fastsam library imported correctly?")
|
207 |
-
traceback.print_exc()
|
208 |
-
return f"A NameError occurred: {ne}. Check library import."
|
209 |
except Exception as e:
|
210 |
-
print(f"Error during FastSAM processing: {e}")
|
211 |
traceback.print_exc()
|
212 |
-
return f"An error occurred
|
213 |
|
214 |
|
215 |
# --- Gradio Interface ---
|
216 |
|
217 |
-
# Pre-load models on startup (optional but good for performance)
|
218 |
print("Attempting to preload models...")
|
219 |
-
load_clip_model()
|
220 |
-
load_fastsam_model() #
|
221 |
print("Preloading finished (or attempted).")
|
222 |
|
223 |
|
224 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
225 |
gr.Markdown("# CLIP & FastSAM Demo")
|
226 |
-
gr.Markdown("Explore Zero-Shot Classification
|
227 |
|
228 |
with gr.Tabs():
|
229 |
-
# --- CLIP Tab ---
|
230 |
with gr.TabItem("CLIP Zero-Shot Classification"):
|
|
|
231 |
gr.Markdown("Upload an image and provide comma-separated candidate labels (e.g., 'cat, dog, car'). CLIP will predict the probability of the image matching each label.")
|
232 |
with gr.Row():
|
233 |
with gr.Column(scale=1):
|
@@ -237,7 +291,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
237 |
with gr.Column(scale=1):
|
238 |
clip_output_label = gr.Label(label="Classification Probabilities")
|
239 |
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview")
|
240 |
-
|
241 |
clip_button.click(
|
242 |
run_clip_zero_shot,
|
243 |
inputs=[clip_input_image, clip_text_labels],
|
@@ -247,56 +300,88 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
247 |
examples=[
|
248 |
["examples/astronaut.jpg", "astronaut, moon, rover, mountain"],
|
249 |
["examples/dog_bike.jpg", "dog, bicycle, person, park, grass"],
|
250 |
-
["examples/clip_logo.png", "logo, text, graphics, abstract art"],
|
251 |
],
|
252 |
inputs=[clip_input_image, clip_text_labels],
|
253 |
-
outputs=[clip_output_label, clip_output_image_display],
|
254 |
-
fn=run_clip_zero_shot,
|
255 |
-
cache_examples=False,
|
256 |
)
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
with gr.Row():
|
262 |
with gr.Column(scale=1):
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
268 |
with gr.Column(scale=1):
|
269 |
-
|
|
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
inputs=[
|
274 |
-
|
275 |
-
outputs=[fastsam_output_image]
|
276 |
)
|
277 |
gr.Examples(
|
278 |
examples=[
|
279 |
-
["examples/
|
280 |
-
["examples/
|
281 |
-
["examples/
|
|
|
|
|
282 |
],
|
283 |
-
inputs=[
|
284 |
-
outputs=[
|
285 |
-
fn=
|
286 |
cache_examples=False,
|
287 |
)
|
288 |
|
289 |
-
#
|
|
|
290 |
if not os.path.exists("examples"):
|
291 |
os.makedirs("examples")
|
292 |
print("Created 'examples' directory. Attempting to download sample images...")
|
293 |
example_files = {
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
300 |
}
|
301 |
for filename, url in example_files.items():
|
302 |
filepath = os.path.join("examples", filename)
|
@@ -311,7 +396,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
311 |
|
312 |
# Launch the Gradio app
|
313 |
if __name__ == "__main__":
|
314 |
-
#
|
315 |
-
# Not needed/used when deploying on Hugging Face Spaces.
|
316 |
-
# debug=True is helpful for development. Set to False for production.
|
317 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoProcessor, AutoModel # Keep CLIP for potential future use or if FastSAM's text prompt isn't enough
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
import numpy as np
|
6 |
import random
|
|
|
12 |
|
13 |
# Device Selection
|
14 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
# Force CPU if CUDA fails or isn't desired (sometimes needed on Spaces free tier)
|
16 |
+
# DEVICE = "cpu"
|
17 |
print(f"Using device: {DEVICE}")
|
18 |
|
19 |
+
# --- CLIP Setup (Kept in case needed, but FastSAM's method is primary now) ---
|
20 |
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
|
21 |
clip_processor = None
|
22 |
clip_model = None
|
|
|
24 |
def load_clip_model():
|
25 |
global clip_processor, clip_model
|
26 |
if clip_processor is None:
|
27 |
+
try:
|
28 |
+
print(f"Loading CLIP processor: {CLIP_MODEL_ID}...")
|
29 |
+
clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID)
|
30 |
+
print("CLIP processor loaded.")
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error loading CLIP processor: {e}")
|
33 |
+
return False # Indicate failure
|
34 |
if clip_model is None:
|
35 |
+
try:
|
36 |
+
print(f"Loading CLIP model: {CLIP_MODEL_ID}...")
|
37 |
+
clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
|
38 |
+
print(f"CLIP model loaded to {DEVICE}.")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error loading CLIP model: {e}")
|
41 |
+
return False # Indicate failure
|
42 |
+
return True # Indicate success
|
43 |
+
|
44 |
|
45 |
# --- FastSAM Setup ---
|
46 |
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
|
|
|
47 |
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"
|
48 |
|
49 |
fastsam_model = None
|
|
|
64 |
fastsam_lib_imported = False
|
65 |
except Exception as e:
|
66 |
print(f"An unexpected error occurred during fastsam import: {e}")
|
67 |
+
traceback.print_exc()
|
68 |
fastsam_lib_imported = False
|
69 |
return fastsam_lib_imported
|
70 |
|
|
|
78 |
except Exception as e:
|
79 |
print(f"Error downloading FastSAM weights: {e}")
|
80 |
print("Please ensure the URL is correct and reachable, or manually place the weights file.")
|
|
|
81 |
if os.path.exists(FASTSAM_CHECKPOINT):
|
82 |
+
try: os.remove(FASTSAM_CHECKPOINT)
|
83 |
+
except OSError: pass
|
|
|
|
|
84 |
return False
|
85 |
return os.path.exists(FASTSAM_CHECKPOINT)
|
86 |
|
87 |
def load_fastsam_model():
|
88 |
global fastsam_model
|
89 |
if fastsam_model is None:
|
90 |
+
if not check_and_import_fastsam():
|
91 |
print("Cannot load FastSAM model because the library couldn't be imported.")
|
92 |
+
return False # Indicate failure
|
93 |
|
94 |
+
if download_fastsam_weights():
|
95 |
try:
|
|
|
96 |
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
|
97 |
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
|
98 |
+
# The FastSAM model itself doesn't need explicit .to(DEVICE)
|
99 |
+
# It seems to handle device selection internally or via the prompt process
|
100 |
+
print(f"FastSAM model loaded.")
|
101 |
+
return True # Indicate success
|
102 |
except Exception as e:
|
103 |
print(f"Error loading FastSAM model: {e}")
|
104 |
traceback.print_exc()
|
105 |
else:
|
106 |
print("FastSAM weights not found or download failed. Cannot load model.")
|
107 |
+
return fastsam_model is not None # Return True if already loaded or loaded successfully
|
108 |
|
109 |
|
110 |
# --- Processing Functions ---
|
111 |
|
112 |
+
# (Keep run_clip_zero_shot and run_fastsam_segmentation as they were for the other tabs)
|
113 |
# CLIP Zero-Shot Classification Function
|
114 |
def run_clip_zero_shot(image: Image.Image, text_labels: str):
|
115 |
+
# Load CLIP if needed
|
116 |
if clip_model is None or clip_processor is None:
|
117 |
+
if not load_clip_model():
|
118 |
+
return "Error: CLIP Model could not be loaded. Check logs.", None
|
|
|
119 |
|
120 |
+
if image is None: return "Please upload an image.", None
|
121 |
+
if not text_labels: return {}, image # Return empty dict, show image
|
|
|
|
|
|
|
122 |
|
123 |
+
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
|
124 |
+
if not labels: return {}, image
|
|
|
|
|
125 |
|
126 |
print(f"Running CLIP zero-shot classification with labels: {labels}")
|
|
|
127 |
try:
|
128 |
+
if image.mode != "RGB": image = image.convert("RGB")
|
|
|
|
|
|
|
129 |
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
|
|
|
130 |
with torch.no_grad():
|
131 |
outputs = clip_model(**inputs)
|
132 |
+
probs = outputs.logits_per_image.softmax(dim=1)
|
|
|
|
|
133 |
print("CLIP processing complete.")
|
|
|
134 |
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
|
|
|
135 |
return confidences, image
|
|
|
136 |
except Exception as e:
|
137 |
print(f"Error during CLIP processing: {e}")
|
138 |
traceback.print_exc()
|
|
|
139 |
return f"An error occurred during CLIP: {e}", image
|
140 |
|
141 |
+
# FastSAM Everything Segmentation Function (for the second tab)
|
|
|
142 |
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
143 |
+
if not load_fastsam_model():
|
144 |
+
return "Error: FastSAM Model not loaded. Check logs."
|
|
|
|
|
|
|
|
|
|
|
145 |
if not fastsam_lib_imported:
|
146 |
+
return "Error: FastSAM library not available."
|
147 |
+
if image_pil is None: return "Please upload an image."
|
148 |
+
|
149 |
+
print("Running FastSAM 'segment everything'...")
|
150 |
+
try:
|
151 |
+
if image_pil.mode != "RGB": image_pil = image_pil.convert("RGB")
|
152 |
+
image_np_rgb = np.array(image_pil)
|
153 |
|
154 |
+
everything_results = fastsam_model(
|
155 |
+
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
|
156 |
+
conf=conf_threshold, iou=iou_threshold,
|
157 |
+
)
|
158 |
+
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
159 |
+
ann = prompt_process.everything_prompt()
|
160 |
+
print(f"FastSAM 'everything' found {len(ann[0]['masks']) if ann and ann[0] and 'masks' in ann[0] else 0} masks.")
|
161 |
+
|
162 |
+
# Plotting
|
163 |
+
output_image = image_pil.copy()
|
164 |
+
if ann and ann[0] is not None and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
|
165 |
+
masks = ann[0]['masks'].cpu().numpy()
|
166 |
+
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
167 |
+
draw = ImageDraw.Draw(overlay)
|
168 |
+
for mask in masks:
|
169 |
+
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 128)
|
170 |
+
mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L')
|
171 |
+
draw.bitmap((0, 0), mask_image, fill=color)
|
172 |
+
output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')
|
173 |
+
|
174 |
+
print("FastSAM 'everything' processing complete.")
|
175 |
+
return output_image
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
print(f"Error during FastSAM 'everything' processing: {e}")
|
179 |
+
traceback.print_exc()
|
180 |
+
return f"An error occurred during FastSAM 'everything': {e}"
|
181 |
+
|
182 |
+
|
183 |
+
# --- NEW: Text-Prompted Segmentation Function ---
|
184 |
+
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
185 |
+
"""Segments objects based on text prompts."""
|
186 |
+
if not load_fastsam_model():
|
187 |
+
return "Error: FastSAM Model not loaded. Check logs.", "No prompts provided."
|
188 |
+
if not fastsam_lib_imported:
|
189 |
+
return "Error: FastSAM library not available.", "FastSAM library error."
|
190 |
if image_pil is None:
|
191 |
+
return "Please upload an image.", "No image provided."
|
192 |
+
if not text_prompts:
|
193 |
+
return image_pil, "Please enter text prompts (e.g., 'person, dog')." # Return original image and message
|
194 |
|
195 |
+
prompts = [p.strip() for p in text_prompts.split(',') if p.strip()]
|
196 |
+
if not prompts:
|
197 |
+
return image_pil, "No valid text prompts entered."
|
198 |
+
|
199 |
+
print(f"Running FastSAM text-prompted segmentation for: {prompts}")
|
200 |
|
201 |
try:
|
|
|
202 |
if image_pil.mode != "RGB":
|
203 |
image_pil = image_pil.convert("RGB")
|
|
|
204 |
image_np_rgb = np.array(image_pil)
|
205 |
|
206 |
+
# 1. Run FastSAM once to get all potential results
|
207 |
+
# NOTE: We might optimize later, but this is the standard way FastSAMPrompt works.
|
208 |
everything_results = fastsam_model(
|
209 |
+
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
|
210 |
+
conf=conf_threshold, iou=iou_threshold, verbose=False # Less console spam
|
|
|
|
|
|
|
|
|
211 |
)
|
212 |
|
213 |
+
# 2. Create the prompt processor
|
214 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
|
|
215 |
|
216 |
+
# 3. Use text_prompt for each prompt and collect masks
|
217 |
+
all_matching_masks = []
|
218 |
+
found_prompts = []
|
219 |
+
|
220 |
+
for text in prompts:
|
221 |
+
print(f" Processing prompt: '{text}'")
|
222 |
+
# Ann is a list of dictionaries, one per image. We have one image.
|
223 |
+
# Each dict can have 'masks', 'bboxes', 'points'.
|
224 |
+
# text_prompt filters 'everything_results' based on CLIP-like similarity.
|
225 |
+
# It might return multiple masks if multiple instances match the text.
|
226 |
+
ann = prompt_process.text_prompt(text=text)
|
227 |
+
|
228 |
+
if ann and ann[0] is not None and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
|
229 |
+
num_found = len(ann[0]['masks'])
|
230 |
+
print(f" Found {num_found} mask(s) matching '{text}'.")
|
231 |
+
found_prompts.append(f"{text} ({num_found})")
|
232 |
+
masks = ann[0]['masks'].cpu().numpy() # Get masks as numpy array (N, H, W)
|
233 |
+
all_matching_masks.extend(masks) # Add the numpy arrays to the list
|
234 |
+
else:
|
235 |
+
print(f" No masks found matching '{text}'.")
|
236 |
+
found_prompts.append(f"{text} (0)")
|
237 |
+
|
238 |
+
# 4. Plot the collected masks
|
239 |
output_image = image_pil.copy()
|
240 |
+
status_message = f"Found segments for: {', '.join(found_prompts)}" if found_prompts else "No matching segments found for any prompt."
|
|
|
241 |
|
242 |
+
if not all_matching_masks:
|
243 |
+
print("No matching masks found for any prompt.")
|
244 |
+
return output_image, status_message # Return original image if nothing matched
|
245 |
|
246 |
+
# Convert list of (H, W) masks to a single (N, H, W) array for consistent processing
|
247 |
+
masks_np = np.stack(all_matching_masks, axis=0) # Shape (TotalMasks, H, W)
|
|
|
|
|
|
|
248 |
|
249 |
+
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
250 |
+
draw = ImageDraw.Draw(overlay)
|
251 |
|
252 |
+
for i in range(masks_np.shape[0]):
|
253 |
+
mask = masks_np[i] # Shape (H, W), boolean
|
254 |
+
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 150) # RGBA with slightly more alpha
|
255 |
+
mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L')
|
256 |
+
draw.bitmap((0, 0), mask_image, fill=color)
|
257 |
+
|
258 |
+
output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')
|
259 |
+
|
260 |
+
print("FastSAM text-prompted processing complete.")
|
261 |
+
return output_image, status_message
|
262 |
|
|
|
|
|
|
|
|
|
263 |
except Exception as e:
|
264 |
+
print(f"Error during FastSAM text-prompted processing: {e}")
|
265 |
traceback.print_exc()
|
266 |
+
return f"An error occurred: {e}", "Error during processing."
|
267 |
|
268 |
|
269 |
# --- Gradio Interface ---
|
270 |
|
|
|
271 |
print("Attempting to preload models...")
|
272 |
+
# load_clip_model() # Load CLIP lazily if needed
|
273 |
+
load_fastsam_model() # Load FastSAM eagerly
|
274 |
print("Preloading finished (or attempted).")
|
275 |
|
276 |
|
277 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
278 |
gr.Markdown("# CLIP & FastSAM Demo")
|
279 |
+
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")
|
280 |
|
281 |
with gr.Tabs():
|
282 |
+
# --- CLIP Tab (No changes) ---
|
283 |
with gr.TabItem("CLIP Zero-Shot Classification"):
|
284 |
+
# ... (keep the existing layout and logic for CLIP) ...
|
285 |
gr.Markdown("Upload an image and provide comma-separated candidate labels (e.g., 'cat, dog, car'). CLIP will predict the probability of the image matching each label.")
|
286 |
with gr.Row():
|
287 |
with gr.Column(scale=1):
|
|
|
291 |
with gr.Column(scale=1):
|
292 |
clip_output_label = gr.Label(label="Classification Probabilities")
|
293 |
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview")
|
|
|
294 |
clip_button.click(
|
295 |
run_clip_zero_shot,
|
296 |
inputs=[clip_input_image, clip_text_labels],
|
|
|
300 |
examples=[
|
301 |
["examples/astronaut.jpg", "astronaut, moon, rover, mountain"],
|
302 |
["examples/dog_bike.jpg", "dog, bicycle, person, park, grass"],
|
303 |
+
["examples/clip_logo.png", "logo, text, graphics, abstract art"],
|
304 |
],
|
305 |
inputs=[clip_input_image, clip_text_labels],
|
306 |
+
outputs=[clip_output_label, clip_output_image_display], fn=run_clip_zero_shot, cache_examples=False,
|
|
|
|
|
307 |
)
|
308 |
|
309 |
+
|
310 |
+
# --- FastSAM Everything Tab (No changes) ---
|
311 |
+
with gr.TabItem("FastSAM Segment Everything"):
|
312 |
+
# ... (keep the existing layout and logic for segment everything) ...
|
313 |
+
gr.Markdown("Upload an image. FastSAM will attempt to segment all objects/regions in the image.")
|
314 |
+
with gr.Row():
|
315 |
+
with gr.Column(scale=1):
|
316 |
+
fastsam_input_image_all = gr.Image(type="pil", label="Input Image", elem_id="fastsam_input_all") # Unique elem_id if needed
|
317 |
+
with gr.Row():
|
318 |
+
fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
|
319 |
+
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
|
320 |
+
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
|
321 |
+
with gr.Column(scale=1):
|
322 |
+
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image", elem_id="fastsam_output_all")
|
323 |
+
fastsam_button_all.click(
|
324 |
+
run_fastsam_segmentation,
|
325 |
+
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
|
326 |
+
outputs=[fastsam_output_image_all]
|
327 |
+
)
|
328 |
+
gr.Examples(
|
329 |
+
examples=[
|
330 |
+
["examples/dogs.jpg", 0.4, 0.9],
|
331 |
+
["examples/fruits.jpg", 0.5, 0.8],
|
332 |
+
["examples/lion.jpg", 0.45, 0.9],
|
333 |
+
],
|
334 |
+
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
|
335 |
+
outputs=[fastsam_output_image_all], fn=run_fastsam_segmentation, cache_examples=False,
|
336 |
+
)
|
337 |
+
|
338 |
+
# --- NEW: Text-Prompted Segmentation Tab ---
|
339 |
+
with gr.TabItem("Text-Prompted Segmentation"):
|
340 |
+
gr.Markdown("Upload an image and provide comma-separated text prompts (e.g., 'person, dog, backpack'). FastSAM + CLIP (internally) will segment only the objects matching the text.")
|
341 |
with gr.Row():
|
342 |
with gr.Column(scale=1):
|
343 |
+
prompt_input_image = gr.Image(type="pil", label="Input Image")
|
344 |
+
prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch, t-shirt")
|
345 |
+
with gr.Row(): # Reuse confidence/IoU sliders if desired
|
346 |
+
prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
|
347 |
+
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
|
348 |
+
prompt_button = gr.Button("Segment by Text", variant="primary")
|
349 |
with gr.Column(scale=1):
|
350 |
+
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
|
351 |
+
prompt_status_message = gr.Textbox(label="Status", interactive=False) # To show which prompts matched
|
352 |
|
353 |
+
prompt_button.click(
|
354 |
+
run_text_prompted_segmentation,
|
355 |
+
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
|
356 |
+
outputs=[prompt_output_image, prompt_status_message] # Map to image and status box
|
|
|
357 |
)
|
358 |
gr.Examples(
|
359 |
examples=[
|
360 |
+
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
|
361 |
+
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
|
362 |
+
["examples/dogs.jpg", "dog", 0.4, 0.9], # Should find multiple dogs
|
363 |
+
["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
|
364 |
+
["examples/teacher.jpg", "person, glasses, blackboard", 0.4, 0.9], # Download this image or use another one with glasses/blackboard
|
365 |
],
|
366 |
+
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
|
367 |
+
outputs=[prompt_output_image, prompt_status_message],
|
368 |
+
fn=run_text_prompted_segmentation,
|
369 |
cache_examples=False,
|
370 |
)
|
371 |
|
372 |
+
# Ensure example images exist or are downloaded
|
373 |
+
# (Keep the existing example download logic, maybe add teacher.jpg if used in examples)
|
374 |
if not os.path.exists("examples"):
|
375 |
os.makedirs("examples")
|
376 |
print("Created 'examples' directory. Attempting to download sample images...")
|
377 |
example_files = {
|
378 |
+
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
|
379 |
+
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
|
380 |
+
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
|
381 |
+
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
|
382 |
+
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
|
383 |
+
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
|
384 |
+
"teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600" # Example with glasses/board
|
385 |
}
|
386 |
for filename, url in example_files.items():
|
387 |
filepath = os.path.join("examples", filename)
|
|
|
396 |
|
397 |
# Launch the Gradio app
|
398 |
if __name__ == "__main__":
|
399 |
+
demo.launch(debug=True) # debug=True is helpful locally
|
|
|
|
|
|