Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ import traceback
|
|
11 |
# --- Configuration & Model Loading ---
|
12 |
|
13 |
# Device Selection with fallback
|
14 |
-
DEVICE = "cuda" if torch.cuda.is_available()
|
15 |
print(f"Using device: {DEVICE}")
|
16 |
|
17 |
# --- CLIP Setup ---
|
@@ -28,6 +28,7 @@ def load_clip_model():
|
|
28 |
print("CLIP processor loaded.")
|
29 |
except Exception as e:
|
30 |
print(f"Error loading CLIP processor: {e}")
|
|
|
31 |
return False
|
32 |
if clip_model is None:
|
33 |
try:
|
@@ -36,6 +37,7 @@ def load_clip_model():
|
|
36 |
print(f"CLIP model loaded to {DEVICE}.")
|
37 |
except Exception as e:
|
38 |
print(f"Error loading CLIP model: {e}")
|
|
|
39 |
return False
|
40 |
return True
|
41 |
|
@@ -45,18 +47,21 @@ FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolv
|
|
45 |
|
46 |
fastsam_model = None
|
47 |
fastsam_lib_imported = False
|
|
|
|
|
48 |
|
49 |
def check_and_import_fastsam():
|
50 |
-
global fastsam_lib_imported
|
51 |
if not fastsam_lib_imported:
|
52 |
try:
|
53 |
-
from fastsam import FastSAM, FastSAMPrompt
|
54 |
-
|
55 |
-
|
56 |
fastsam_lib_imported = True
|
57 |
print("fastsam library imported successfully.")
|
58 |
except ImportError as e:
|
59 |
-
print(f"Error: 'fastsam' library not found.
|
|
|
60 |
fastsam_lib_imported = False
|
61 |
except Exception as e:
|
62 |
print(f"Unexpected error during fastsam import: {e}")
|
@@ -69,15 +74,25 @@ def download_fastsam_weights(retries=3):
|
|
69 |
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
|
70 |
for attempt in range(retries):
|
71 |
try:
|
|
|
|
|
72 |
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
|
73 |
print("FastSAM weights downloaded.")
|
74 |
-
|
75 |
except Exception as e:
|
76 |
-
print(f"Attempt {attempt + 1}/{retries} failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
77 |
if attempt + 1 == retries:
|
78 |
print("Failed to download weights after all attempts.")
|
79 |
return False
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
def load_fastsam_model():
|
83 |
global fastsam_model
|
@@ -86,96 +101,257 @@ def load_fastsam_model():
|
|
86 |
print("Cannot load FastSAM model due to library import failure.")
|
87 |
return False
|
88 |
if download_fastsam_weights():
|
|
|
|
|
|
|
|
|
89 |
try:
|
90 |
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
|
|
|
91 |
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
|
|
|
|
|
|
|
92 |
print("FastSAM model loaded.")
|
93 |
return True
|
94 |
except Exception as e:
|
95 |
-
print(f"Error loading FastSAM model: {e}")
|
96 |
traceback.print_exc()
|
97 |
return False
|
98 |
else:
|
99 |
print("FastSAM weights not found or download failed.")
|
100 |
return False
|
|
|
101 |
return True
|
102 |
|
103 |
# --- Processing Functions ---
|
104 |
|
105 |
def run_clip_zero_shot(image: Image.Image, text_labels: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
if clip_model is None or clip_processor is None:
|
107 |
if not load_clip_model():
|
|
|
108 |
return "Error: CLIP Model could not be loaded.", None
|
109 |
-
if image is None:
|
110 |
-
return "Please upload an image.", None
|
111 |
if not text_labels:
|
|
|
112 |
return {}, image
|
113 |
|
114 |
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
|
115 |
if not labels:
|
|
|
116 |
return {}, image
|
117 |
|
118 |
print(f"Running CLIP zero-shot classification with labels: {labels}")
|
119 |
try:
|
|
|
120 |
if image.mode != "RGB":
|
|
|
121 |
image = image.convert("RGB")
|
|
|
122 |
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
|
123 |
with torch.no_grad():
|
124 |
outputs = clip_model(**inputs)
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
|
|
|
|
|
127 |
return confidences, image
|
128 |
except Exception as e:
|
129 |
print(f"Error during CLIP processing: {e}")
|
130 |
traceback.print_exc()
|
131 |
-
|
|
|
|
|
132 |
|
133 |
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
print("Running FastSAM 'segment everything'...")
|
140 |
try:
|
|
|
141 |
if image_pil.mode != "RGB":
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
|
|
|
|
145 |
everything_results = fastsam_model(
|
146 |
-
image_np_rgb,
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
148 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
150 |
-
ann = prompt_process.everything_prompt()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
|
|
|
|
152 |
output_image = image_pil.copy()
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
156 |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
157 |
draw = ImageDraw.Draw(overlay)
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
else:
|
165 |
-
print("No masks detected
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
except Exception as e:
|
168 |
print(f"Error during FastSAM 'everything' processing: {e}")
|
169 |
traceback.print_exc()
|
170 |
-
|
|
|
|
|
171 |
|
172 |
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
if not text_prompts:
|
180 |
return image_pil, "Please enter text prompts (e.g., 'person, dog')."
|
181 |
|
@@ -183,92 +359,158 @@ def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, co
|
|
183 |
if not prompts:
|
184 |
return image_pil, "No valid text prompts entered."
|
185 |
|
186 |
-
print(f"Running FastSAM text-prompted segmentation for: {prompts}")
|
|
|
|
|
|
|
187 |
try:
|
|
|
188 |
if image_pil.mode != "RGB":
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
191 |
|
|
|
192 |
everything_results = fastsam_model(
|
193 |
-
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
|
194 |
conf=conf_threshold, iou=iou_threshold, verbose=True
|
195 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
|
|
197 |
all_matching_masks = []
|
198 |
-
|
199 |
|
|
|
200 |
for text in prompts:
|
201 |
print(f" Processing prompt: '{text}'")
|
|
|
202 |
ann = prompt_process.text_prompt(text=text)
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
else:
|
210 |
-
|
211 |
-
|
|
|
212 |
|
|
|
|
|
|
|
213 |
output_image = image_pil.copy()
|
214 |
-
status_message = f"
|
215 |
|
|
|
216 |
if all_matching_masks:
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
219 |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
220 |
draw = ImageDraw.Draw(overlay)
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
return output_image, status_message
|
|
|
229 |
except Exception as e:
|
230 |
print(f"Error during FastSAM text-prompted processing: {e}")
|
231 |
traceback.print_exc()
|
232 |
-
|
|
|
233 |
|
234 |
# --- Gradio Interface ---
|
235 |
|
236 |
print("Attempting to preload models...")
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
241 |
gr.Markdown("# CLIP & FastSAM Demo")
|
242 |
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")
|
243 |
|
244 |
with gr.Tabs():
|
|
|
245 |
with gr.TabItem("CLIP Zero-Shot Classification"):
|
246 |
-
|
247 |
-
with gr.Row():
|
248 |
-
with gr.Column(scale=1):
|
249 |
-
clip_input_image = gr.Image(type="pil", label="Input Image")
|
250 |
-
clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon")
|
251 |
-
clip_button = gr.Button("Run CLIP Classification", variant="primary")
|
252 |
-
with gr.Column(scale=1):
|
253 |
-
clip_output_label = gr.Label(label="Classification Probabilities")
|
254 |
-
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview")
|
255 |
clip_button.click(
|
256 |
run_clip_zero_shot,
|
257 |
inputs=[clip_input_image, clip_text_labels],
|
|
|
258 |
outputs=[clip_output_label, clip_output_image_display]
|
259 |
)
|
260 |
-
|
261 |
-
|
262 |
-
["examples/astronaut.jpg", "astronaut, moon, rover"],
|
263 |
-
["examples/dog_bike.jpg", "dog, bicycle, person"],
|
264 |
-
["examples/clip_logo.png", "logo, text, graphics"],
|
265 |
-
],
|
266 |
-
inputs=[clip_input_image, clip_text_labels],
|
267 |
-
outputs=[clip_output_label, clip_output_image_display],
|
268 |
-
fn=run_clip_zero_shot,
|
269 |
-
cache_examples=False,
|
270 |
-
)
|
271 |
|
|
|
272 |
with gr.TabItem("FastSAM Segment Everything"):
|
273 |
gr.Markdown("Upload an image to segment all objects/regions.")
|
274 |
with gr.Row():
|
@@ -279,24 +521,35 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
279 |
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
|
280 |
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
|
281 |
with gr.Column(scale=1):
|
|
|
282 |
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image")
|
|
|
|
|
|
|
283 |
fastsam_button_all.click(
|
284 |
run_fastsam_segmentation,
|
285 |
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
|
286 |
-
|
|
|
287 |
)
|
|
|
|
|
288 |
gr.Examples(
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
300 |
with gr.TabItem("Text-Prompted Segmentation"):
|
301 |
gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
|
302 |
with gr.Row():
|
@@ -308,28 +561,35 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
308 |
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
|
309 |
prompt_button = gr.Button("Segment by Text", variant="primary")
|
310 |
with gr.Column(scale=1):
|
|
|
311 |
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
|
|
|
312 |
prompt_status_message = gr.Textbox(label="Status", interactive=False)
|
|
|
313 |
prompt_button.click(
|
314 |
run_text_prompted_segmentation,
|
315 |
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
|
|
|
316 |
outputs=[prompt_output_image, prompt_status_message]
|
317 |
)
|
|
|
318 |
gr.Examples(
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
|
|
333 |
if not os.path.exists("examples"):
|
334 |
os.makedirs("examples")
|
335 |
print("Created 'examples' directory.")
|
@@ -345,17 +605,29 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
345 |
def download_example_file(filename, url, retries=3):
|
346 |
filepath = os.path.join("examples", filename)
|
347 |
if not os.path.exists(filepath):
|
|
|
348 |
for attempt in range(retries):
|
349 |
try:
|
350 |
-
print(f"Downloading {filename} (attempt {attempt + 1}/{retries})...")
|
351 |
wget.download(url, filepath)
|
352 |
-
|
|
|
353 |
except Exception as e:
|
354 |
-
print(f"
|
|
|
|
|
|
|
355 |
if attempt + 1 == retries:
|
356 |
print(f"Failed to download {filename} after {retries} attempts.")
|
|
|
|
|
|
|
|
|
357 |
for filename, url in example_files.items():
|
358 |
download_example_file(filename, url)
|
|
|
|
|
359 |
|
|
|
360 |
if __name__ == "__main__":
|
361 |
-
|
|
|
|
11 |
# --- Configuration & Model Loading ---
|
12 |
|
13 |
# Device Selection with fallback
|
14 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Simplified check
|
15 |
print(f"Using device: {DEVICE}")
|
16 |
|
17 |
# --- CLIP Setup ---
|
|
|
28 |
print("CLIP processor loaded.")
|
29 |
except Exception as e:
|
30 |
print(f"Error loading CLIP processor: {e}")
|
31 |
+
traceback.print_exc() # Print traceback
|
32 |
return False
|
33 |
if clip_model is None:
|
34 |
try:
|
|
|
37 |
print(f"CLIP model loaded to {DEVICE}.")
|
38 |
except Exception as e:
|
39 |
print(f"Error loading CLIP model: {e}")
|
40 |
+
traceback.print_exc() # Print traceback
|
41 |
return False
|
42 |
return True
|
43 |
|
|
|
47 |
|
48 |
fastsam_model = None
|
49 |
fastsam_lib_imported = False
|
50 |
+
FastSAM = None # Define placeholders
|
51 |
+
FastSAMPrompt = None # Define placeholders
|
52 |
|
53 |
def check_and_import_fastsam():
|
54 |
+
global fastsam_lib_imported, FastSAM, FastSAMPrompt # Make sure globals are modified
|
55 |
if not fastsam_lib_imported:
|
56 |
try:
|
57 |
+
from fastsam import FastSAM as FastSAM_lib, FastSAMPrompt as FastSAMPrompt_lib # Use temp names
|
58 |
+
FastSAM = FastSAM_lib # Assign to global
|
59 |
+
FastSAMPrompt = FastSAMPrompt_lib # Assign to global
|
60 |
fastsam_lib_imported = True
|
61 |
print("fastsam library imported successfully.")
|
62 |
except ImportError as e:
|
63 |
+
print(f"Error: 'fastsam' library not found. Please install it: pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git")
|
64 |
+
print(f"ImportError: {e}")
|
65 |
fastsam_lib_imported = False
|
66 |
except Exception as e:
|
67 |
print(f"Unexpected error during fastsam import: {e}")
|
|
|
74 |
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
|
75 |
for attempt in range(retries):
|
76 |
try:
|
77 |
+
# Ensure the directory exists if FASTSAM_CHECKPOINT includes a path
|
78 |
+
os.makedirs(os.path.dirname(FASTSAM_CHECKPOINT) or '.', exist_ok=True)
|
79 |
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
|
80 |
print("FastSAM weights downloaded.")
|
81 |
+
return True # Return True on successful download
|
82 |
except Exception as e:
|
83 |
+
print(f"Attempt {attempt + 1}/{retries} failed to download FastSAM weights: {e}")
|
84 |
+
if os.path.exists(FASTSAM_CHECKPOINT): # Cleanup partial download
|
85 |
+
try:
|
86 |
+
os.remove(FASTSAM_CHECKPOINT)
|
87 |
+
except OSError:
|
88 |
+
pass
|
89 |
if attempt + 1 == retries:
|
90 |
print("Failed to download weights after all attempts.")
|
91 |
return False
|
92 |
+
return False # Should not be reached if loop completes, but added for clarity
|
93 |
+
else:
|
94 |
+
print("FastSAM weights already exist.")
|
95 |
+
return True # Weights exist
|
96 |
|
97 |
def load_fastsam_model():
|
98 |
global fastsam_model
|
|
|
101 |
print("Cannot load FastSAM model due to library import failure.")
|
102 |
return False
|
103 |
if download_fastsam_weights():
|
104 |
+
# Ensure FastSAM class is available (might fail if import failed earlier but file exists)
|
105 |
+
if FastSAM is None:
|
106 |
+
print("FastSAM class not available, check import status.")
|
107 |
+
return False
|
108 |
try:
|
109 |
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
|
110 |
+
# Instantiate the imported class
|
111 |
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
|
112 |
+
# Move model to device *after* initialization (common practice)
|
113 |
+
# Note: Check FastSAM docs if it needs explicit .to(DEVICE) or handles it internally
|
114 |
+
# fastsam_model.model.to(DEVICE) # Example if needed, adjust based on FastSAM structure
|
115 |
print("FastSAM model loaded.")
|
116 |
return True
|
117 |
except Exception as e:
|
118 |
+
print(f"Error loading FastSAM model weights or initializing: {e}")
|
119 |
traceback.print_exc()
|
120 |
return False
|
121 |
else:
|
122 |
print("FastSAM weights not found or download failed.")
|
123 |
return False
|
124 |
+
# Model already loaded
|
125 |
return True
|
126 |
|
127 |
# --- Processing Functions ---
|
128 |
|
129 |
def run_clip_zero_shot(image: Image.Image, text_labels: str):
|
130 |
+
# Keep CLIP as is, seems less likely to be the primary issue
|
131 |
+
if not isinstance(image, Image.Image):
|
132 |
+
print(f"CLIP input is not a PIL Image, type: {type(image)}")
|
133 |
+
# Try to convert if it's a numpy array (common from Gradio)
|
134 |
+
if isinstance(image, np.ndarray):
|
135 |
+
try:
|
136 |
+
image = Image.fromarray(image)
|
137 |
+
print("Converted numpy input to PIL Image for CLIP.")
|
138 |
+
except Exception as e:
|
139 |
+
print(f"Failed to convert numpy array to PIL Image: {e}")
|
140 |
+
return "Error: Invalid image input format.", None
|
141 |
+
else:
|
142 |
+
return "Error: Please provide a valid image.", None
|
143 |
+
|
144 |
if clip_model is None or clip_processor is None:
|
145 |
if not load_clip_model():
|
146 |
+
# Return None for the image part on critical error
|
147 |
return "Error: CLIP Model could not be loaded.", None
|
|
|
|
|
148 |
if not text_labels:
|
149 |
+
# Return empty dict and original image if no labels
|
150 |
return {}, image
|
151 |
|
152 |
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
|
153 |
if not labels:
|
154 |
+
# Return empty dict and original image if no valid labels
|
155 |
return {}, image
|
156 |
|
157 |
print(f"Running CLIP zero-shot classification with labels: {labels}")
|
158 |
try:
|
159 |
+
# Ensure image is RGB
|
160 |
if image.mode != "RGB":
|
161 |
+
print(f"Converting image from {image.mode} to RGB for CLIP.")
|
162 |
image = image.convert("RGB")
|
163 |
+
|
164 |
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
|
165 |
with torch.no_grad():
|
166 |
outputs = clip_model(**inputs)
|
167 |
+
# Calculate probabilities
|
168 |
+
logits_per_image = outputs.logits_per_image # B x N_labels
|
169 |
+
probs = logits_per_image.softmax(dim=1) # Softmax over labels
|
170 |
+
|
171 |
+
# Create confidences dictionary
|
172 |
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
|
173 |
+
print(f"CLIP Confidences: {confidences}")
|
174 |
+
# Return confidences and the original (potentially converted) image
|
175 |
return confidences, image
|
176 |
except Exception as e:
|
177 |
print(f"Error during CLIP processing: {e}")
|
178 |
traceback.print_exc()
|
179 |
+
# Return error message and None for image
|
180 |
+
return f"Error during CLIP processing: {e}", None
|
181 |
+
|
182 |
|
183 |
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
184 |
+
# Add input type check
|
185 |
+
if not isinstance(image_pil, Image.Image):
|
186 |
+
print(f"FastSAM input is not a PIL Image, type: {type(image_pil)}")
|
187 |
+
if isinstance(image_pil, np.ndarray):
|
188 |
+
try:
|
189 |
+
image_pil = Image.fromarray(image_pil)
|
190 |
+
print("Converted numpy input to PIL Image for FastSAM.")
|
191 |
+
except Exception as e:
|
192 |
+
print(f"Failed to convert numpy array to PIL Image: {e}")
|
193 |
+
# Return None for image on error
|
194 |
+
return None, "Error: Invalid image input format." # Return tuple for consistency
|
195 |
+
else:
|
196 |
+
# Return None for image on error
|
197 |
+
return None, "Error: Please provide a valid image." # Return tuple
|
198 |
+
|
199 |
+
# Ensure model is loaded
|
200 |
+
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
|
201 |
+
# Return None for image on critical error
|
202 |
+
return None, "Error: FastSAM not loaded or library unavailable."
|
203 |
+
|
204 |
+
print(f"Running FastSAM 'segment everything' with conf={conf_threshold}, iou={iou_threshold}...")
|
205 |
+
output_image = None # Initialize output image
|
206 |
+
status_message = "Processing..." # Initial status
|
207 |
|
|
|
208 |
try:
|
209 |
+
# Ensure image is RGB
|
210 |
if image_pil.mode != "RGB":
|
211 |
+
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
|
212 |
+
image_pil_rgb = image_pil.convert("RGB")
|
213 |
+
else:
|
214 |
+
image_pil_rgb = image_pil
|
215 |
+
|
216 |
+
# Convert PIL Image to NumPy array (RGB)
|
217 |
+
image_np_rgb = np.array(image_pil_rgb)
|
218 |
+
print(f"Input image shape for FastSAM: {image_np_rgb.shape}")
|
219 |
|
220 |
+
# Run FastSAM model
|
221 |
+
# Make sure the arguments match what FastSAM expects
|
222 |
everything_results = fastsam_model(
|
223 |
+
image_np_rgb,
|
224 |
+
device=DEVICE,
|
225 |
+
retina_masks=True,
|
226 |
+
imgsz=640, # Or another size FastSAM supports
|
227 |
+
conf=conf_threshold,
|
228 |
+
iou=iou_threshold,
|
229 |
+
verbose=True # Keep verbose for debugging
|
230 |
)
|
231 |
+
|
232 |
+
# Check if results are valid before creating prompt
|
233 |
+
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
|
234 |
+
print("FastSAM model returned None or empty results.")
|
235 |
+
# Return original image and status
|
236 |
+
return image_pil, "FastSAM did not return valid results."
|
237 |
+
|
238 |
+
# Results might be in a different format, inspect 'everything_results'
|
239 |
+
print(f"Type of everything_results: {type(everything_results)}")
|
240 |
+
print(f"Length of everything_results: {len(everything_results)}")
|
241 |
+
if len(everything_results) > 0:
|
242 |
+
print(f"Type of first element: {type(everything_results[0])}")
|
243 |
+
# Try to access potential attributes like 'masks' if it's an object
|
244 |
+
if hasattr(everything_results[0], 'masks') and everything_results[0].masks is not None:
|
245 |
+
print(f"Masks found in results object, shape: {everything_results[0].masks.data.shape}")
|
246 |
+
else:
|
247 |
+
print("First result element does not have 'masks' attribute or it's None.")
|
248 |
+
|
249 |
+
|
250 |
+
# Process results with FastSAMPrompt
|
251 |
+
# Ensure FastSAMPrompt class is available
|
252 |
+
if FastSAMPrompt is None:
|
253 |
+
print("FastSAMPrompt class is not available.")
|
254 |
+
return image_pil, "Error: FastSAMPrompt class not loaded."
|
255 |
+
|
256 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
257 |
+
ann = prompt_process.everything_prompt() # Get all annotations
|
258 |
+
|
259 |
+
# Check annotation format - Adjust based on actual FastSAM output structure
|
260 |
+
# Assuming 'ann' is a list and the first element is a dictionary containing masks
|
261 |
+
masks = None
|
262 |
+
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
|
263 |
+
mask_tensor = ann[0]['masks']
|
264 |
+
if mask_tensor is not None and mask_tensor.numel() > 0: # Check if tensor is not None and not empty
|
265 |
+
masks = mask_tensor.cpu().numpy()
|
266 |
+
print(f"Found {len(masks)} masks with shape: {masks.shape}")
|
267 |
+
else:
|
268 |
+
print("Annotation 'masks' tensor is None or empty.")
|
269 |
+
else:
|
270 |
+
print(f"No masks found or annotation format unexpected. ann type: {type(ann)}")
|
271 |
+
if isinstance(ann, list) and len(ann) > 0:
|
272 |
+
print(f"First element of ann: {ann[0]}")
|
273 |
|
274 |
+
|
275 |
+
# Prepare output image (start with original)
|
276 |
output_image = image_pil.copy()
|
277 |
+
|
278 |
+
# Draw masks if found
|
279 |
+
if masks is not None and len(masks) > 0:
|
280 |
+
# Ensure output_image is RGBA for compositing
|
281 |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
282 |
draw = ImageDraw.Draw(overlay)
|
283 |
+
|
284 |
+
for i, mask in enumerate(masks):
|
285 |
+
# Ensure mask is boolean/binary before converting
|
286 |
+
binary_mask = (mask > 0) # Use threshold 0 for binary mask from FastSAM output
|
287 |
+
mask_uint8 = binary_mask.astype(np.uint8) * 255
|
288 |
+
if mask_uint8.max() == 0: # Skip empty masks
|
289 |
+
# print(f"Skipping empty mask {i}")
|
290 |
+
continue
|
291 |
+
|
292 |
+
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180) # RGBA color
|
293 |
+
try:
|
294 |
+
mask_image = Image.fromarray(mask_uint8, mode='L') # Grayscale mask
|
295 |
+
# Draw the mask onto the overlay
|
296 |
+
draw.bitmap((0, 0), mask_image, fill=color)
|
297 |
+
except Exception as draw_err:
|
298 |
+
print(f"Error drawing mask {i}: {draw_err}")
|
299 |
+
traceback.print_exc()
|
300 |
+
continue # Skip this mask
|
301 |
+
|
302 |
+
# Composite the overlay onto the image
|
303 |
+
try:
|
304 |
+
output_image_rgba = output_image.convert('RGBA')
|
305 |
+
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
|
306 |
+
output_image = output_image_composited.convert('RGB') # Convert back to RGB for Gradio
|
307 |
+
status_message = f"Segmentation complete. Found {len(masks)} masks."
|
308 |
+
print("Mask drawing and compositing finished.")
|
309 |
+
except Exception as comp_err:
|
310 |
+
print(f"Error during alpha compositing: {comp_err}")
|
311 |
+
traceback.print_exc()
|
312 |
+
output_image = image_pil # Fallback to original image
|
313 |
+
status_message = "Error during mask visualization."
|
314 |
+
|
315 |
else:
|
316 |
+
print("No masks detected or processed for 'segment everything' mode.")
|
317 |
+
status_message = "No segments found or processed."
|
318 |
+
output_image = image_pil # Return original image if no masks
|
319 |
+
|
320 |
+
# Save for debugging before returning
|
321 |
+
if output_image:
|
322 |
+
try:
|
323 |
+
debug_path = "debug_fastsam_everything_output.png"
|
324 |
+
output_image.save(debug_path)
|
325 |
+
print(f"Saved debug output to {debug_path}")
|
326 |
+
except Exception as save_err:
|
327 |
+
print(f"Failed to save debug image: {save_err}")
|
328 |
+
|
329 |
+
return output_image, status_message # Return image and status message
|
330 |
+
|
331 |
except Exception as e:
|
332 |
print(f"Error during FastSAM 'everything' processing: {e}")
|
333 |
traceback.print_exc()
|
334 |
+
# Return original image and error message in case of failure
|
335 |
+
return image_pil, f"Error during processing: {e}"
|
336 |
+
|
337 |
|
338 |
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
|
339 |
+
# Add input type check
|
340 |
+
if not isinstance(image_pil, Image.Image):
|
341 |
+
print(f"FastSAM Text input is not a PIL Image, type: {type(image_pil)}")
|
342 |
+
if isinstance(image_pil, np.ndarray):
|
343 |
+
try:
|
344 |
+
image_pil = Image.fromarray(image_pil)
|
345 |
+
print("Converted numpy input to PIL Image for FastSAM Text.")
|
346 |
+
except Exception as e:
|
347 |
+
print(f"Failed to convert numpy array to PIL Image: {e}")
|
348 |
+
return None, "Error: Invalid image input format."
|
349 |
+
else:
|
350 |
+
return None, "Error: Please provide a valid image."
|
351 |
+
|
352 |
+
# Ensure model is loaded
|
353 |
+
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
|
354 |
+
return image_pil, "Error: FastSAM Model not loaded or library unavailable." # Return original image on load fail
|
355 |
if not text_prompts:
|
356 |
return image_pil, "Please enter text prompts (e.g., 'person, dog')."
|
357 |
|
|
|
359 |
if not prompts:
|
360 |
return image_pil, "No valid text prompts entered."
|
361 |
|
362 |
+
print(f"Running FastSAM text-prompted segmentation for: {prompts} with conf={conf_threshold}, iou={iou_threshold}")
|
363 |
+
output_image = None
|
364 |
+
status_message = "Processing..."
|
365 |
+
|
366 |
try:
|
367 |
+
# Ensure image is RGB
|
368 |
if image_pil.mode != "RGB":
|
369 |
+
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
|
370 |
+
image_pil_rgb = image_pil.convert("RGB")
|
371 |
+
else:
|
372 |
+
image_pil_rgb = image_pil
|
373 |
+
|
374 |
+
image_np_rgb = np.array(image_pil_rgb)
|
375 |
+
print(f"Input image shape for FastSAM Text: {image_np_rgb.shape}")
|
376 |
|
377 |
+
# Run FastSAM once to get all potential segments
|
378 |
everything_results = fastsam_model(
|
379 |
+
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, # Use consistent args
|
380 |
conf=conf_threshold, iou=iou_threshold, verbose=True
|
381 |
)
|
382 |
+
|
383 |
+
# Check results
|
384 |
+
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
|
385 |
+
print("FastSAM model returned None or empty results for text prompt base.")
|
386 |
+
return image_pil, "FastSAM did not return base results."
|
387 |
+
|
388 |
+
# Initialize FastSAMPrompt
|
389 |
+
if FastSAMPrompt is None:
|
390 |
+
print("FastSAMPrompt class is not available.")
|
391 |
+
return image_pil, "Error: FastSAMPrompt class not loaded."
|
392 |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
|
393 |
+
|
394 |
all_matching_masks = []
|
395 |
+
found_prompts_details = [] # Store details like 'prompt (count)'
|
396 |
|
397 |
+
# Process each text prompt
|
398 |
for text in prompts:
|
399 |
print(f" Processing prompt: '{text}'")
|
400 |
+
# Get annotation for the specific text prompt
|
401 |
ann = prompt_process.text_prompt(text=text)
|
402 |
+
|
403 |
+
# Check annotation format and extract masks
|
404 |
+
current_masks = None
|
405 |
+
num_found = 0
|
406 |
+
# Adjust check based on actual structure of 'ann' for text_prompt
|
407 |
+
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
|
408 |
+
mask_tensor = ann[0]['masks']
|
409 |
+
if mask_tensor is not None and mask_tensor.numel() > 0:
|
410 |
+
current_masks = mask_tensor.cpu().numpy()
|
411 |
+
num_found = len(current_masks)
|
412 |
+
print(f" Found {num_found} mask(s) for '{text}'. Shape: {current_masks.shape}")
|
413 |
+
all_matching_masks.extend(current_masks) # Add found masks to the list
|
414 |
+
else:
|
415 |
+
print(f" Annotation 'masks' tensor is None or empty for '{text}'.")
|
416 |
else:
|
417 |
+
print(f" No masks found or annotation format unexpected for '{text}'. ann type: {type(ann)}")
|
418 |
+
if isinstance(ann, list) and len(ann) > 0:
|
419 |
+
print(f" First element of ann for '{text}': {ann[0]}")
|
420 |
|
421 |
+
found_prompts_details.append(f"{text} ({num_found})") # Record count for status
|
422 |
+
|
423 |
+
# Prepare output image
|
424 |
output_image = image_pil.copy()
|
425 |
+
status_message = f"Results: {', '.join(found_prompts_details)}" if found_prompts_details else "No matches found for any prompt."
|
426 |
|
427 |
+
# Draw all collected masks if any were found
|
428 |
if all_matching_masks:
|
429 |
+
print(f"Total masks collected across all prompts: {len(all_matching_masks)}")
|
430 |
+
# Stack masks if needed (optional, can draw one by one)
|
431 |
+
# masks_np = np.stack(all_matching_masks, axis=0)
|
432 |
+
# print(f"Total masks stacked shape: {masks_np.shape}")
|
433 |
+
|
434 |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
|
435 |
draw = ImageDraw.Draw(overlay)
|
436 |
+
|
437 |
+
for i, mask in enumerate(all_matching_masks): # Iterate through collected masks
|
438 |
+
binary_mask = (mask > 0)
|
439 |
+
mask_uint8 = binary_mask.astype(np.uint8) * 255
|
440 |
+
if mask_uint8.max() == 0:
|
441 |
+
continue # Skip empty masks
|
442 |
+
|
443 |
+
# Assign a unique color per mask or per prompt (using random here)
|
444 |
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
|
445 |
+
try:
|
446 |
+
mask_image = Image.fromarray(mask_uint8, mode='L')
|
447 |
+
draw.bitmap((0, 0), mask_image, fill=color)
|
448 |
+
except Exception as draw_err:
|
449 |
+
print(f"Error drawing collected mask {i}: {draw_err}")
|
450 |
+
traceback.print_exc()
|
451 |
+
continue
|
452 |
+
|
453 |
+
# Composite the overlay
|
454 |
+
try:
|
455 |
+
output_image_rgba = output_image.convert('RGBA')
|
456 |
+
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
|
457 |
+
output_image = output_image_composited.convert('RGB')
|
458 |
+
print("Text prompt mask drawing and compositing finished.")
|
459 |
+
except Exception as comp_err:
|
460 |
+
print(f"Error during alpha compositing for text prompts: {comp_err}")
|
461 |
+
traceback.print_exc()
|
462 |
+
output_image = image_pil # Fallback
|
463 |
+
status_message += " (Error during visualization)"
|
464 |
+
else:
|
465 |
+
print("No matching masks found for any text prompt.")
|
466 |
+
# status_message is already set
|
467 |
+
|
468 |
+
# Save for debugging
|
469 |
+
if output_image:
|
470 |
+
try:
|
471 |
+
debug_path = "debug_fastsam_text_output.png"
|
472 |
+
output_image.save(debug_path)
|
473 |
+
print(f"Saved debug output to {debug_path}")
|
474 |
+
except Exception as save_err:
|
475 |
+
print(f"Failed to save debug image: {save_err}")
|
476 |
|
477 |
return output_image, status_message
|
478 |
+
|
479 |
except Exception as e:
|
480 |
print(f"Error during FastSAM text-prompted processing: {e}")
|
481 |
traceback.print_exc()
|
482 |
+
# Return original image and error message
|
483 |
+
return image_pil, f"Error during processing: {e}"
|
484 |
|
485 |
# --- Gradio Interface ---
|
486 |
|
487 |
print("Attempting to preload models...")
|
488 |
+
load_clip_model() # Preload CLIP
|
489 |
+
load_fastsam_model() # Preload FastSAM
|
490 |
+
print("Preloading finished (check logs above for errors).")
|
491 |
+
|
492 |
+
|
493 |
+
# --- Gradio Interface Definition ---
|
494 |
+
# (Your Gradio Blocks code remains largely the same, but ensure the outputs match the function returns)
|
495 |
|
496 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
497 |
gr.Markdown("# CLIP & FastSAM Demo")
|
498 |
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")
|
499 |
|
500 |
with gr.Tabs():
|
501 |
+
# --- CLIP Tab ---
|
502 |
with gr.TabItem("CLIP Zero-Shot Classification"):
|
503 |
+
# ... (CLIP UI definition - seems ok) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
clip_button.click(
|
505 |
run_clip_zero_shot,
|
506 |
inputs=[clip_input_image, clip_text_labels],
|
507 |
+
# Output matches: Label (dict/str), Image (PIL/None)
|
508 |
outputs=[clip_output_label, clip_output_image_display]
|
509 |
)
|
510 |
+
# ... (CLIP Examples - seems ok) ...
|
511 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
|
513 |
+
# --- FastSAM Everything Tab ---
|
514 |
with gr.TabItem("FastSAM Segment Everything"):
|
515 |
gr.Markdown("Upload an image to segment all objects/regions.")
|
516 |
with gr.Row():
|
|
|
521 |
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
|
522 |
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
|
523 |
with gr.Column(scale=1):
|
524 |
+
# Output for the image
|
525 |
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image")
|
526 |
+
# Add a Textbox for status messages/errors
|
527 |
+
fastsam_status_all = gr.Textbox(label="Status", interactive=False)
|
528 |
+
|
529 |
fastsam_button_all.click(
|
530 |
run_fastsam_segmentation,
|
531 |
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
|
532 |
+
# Outputs: Image (PIL/None), Status (str)
|
533 |
+
outputs=[fastsam_output_image_all, fastsam_status_all] # Updated outputs
|
534 |
)
|
535 |
+
# Update examples if needed to match new output structure (add None/str for status)
|
536 |
+
# Note: Examples might need adjustment if they expect only image output
|
537 |
gr.Examples(
|
538 |
+
examples=[
|
539 |
+
["examples/dogs.jpg", 0.4, 0.9],
|
540 |
+
["examples/fruits.jpg", 0.5, 0.8],
|
541 |
+
["examples/lion.jpg", 0.45, 0.9],
|
542 |
+
],
|
543 |
+
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
|
544 |
+
# Need to adjust outputs for examples if function signature changed
|
545 |
+
# This might require a wrapper if examples expect single output
|
546 |
+
# For now, comment out example outputs or adjust function signature for examples
|
547 |
+
outputs=[fastsam_output_image_all, fastsam_status_all],
|
548 |
+
fn=run_fastsam_segmentation,
|
549 |
+
cache_examples=False, # Keep False for debugging
|
550 |
+
)
|
551 |
+
|
552 |
+
# --- Text-Prompted Segmentation Tab ---
|
553 |
with gr.TabItem("Text-Prompted Segmentation"):
|
554 |
gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
|
555 |
with gr.Row():
|
|
|
561 |
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
|
562 |
prompt_button = gr.Button("Segment by Text", variant="primary")
|
563 |
with gr.Column(scale=1):
|
564 |
+
# Output Image
|
565 |
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
|
566 |
+
# Status Textbox (already exists, correctly)
|
567 |
prompt_status_message = gr.Textbox(label="Status", interactive=False)
|
568 |
+
|
569 |
prompt_button.click(
|
570 |
run_text_prompted_segmentation,
|
571 |
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
|
572 |
+
# Outputs: Image (PIL/None), Status (str) - Matches function
|
573 |
outputs=[prompt_output_image, prompt_status_message]
|
574 |
)
|
575 |
+
# Update examples similarly if needed
|
576 |
gr.Examples(
|
577 |
+
examples=[
|
578 |
+
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
|
579 |
+
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
|
580 |
+
["examples/dogs.jpg", "dog", 0.4, 0.9],
|
581 |
+
["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
|
582 |
+
["examples/teacher.jpg", "person, glasses", 0.4, 0.9],
|
583 |
+
],
|
584 |
+
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
|
585 |
+
outputs=[prompt_output_image, prompt_status_message],
|
586 |
+
fn=run_text_prompted_segmentation,
|
587 |
+
cache_examples=False, # Keep False for debugging
|
588 |
+
)
|
589 |
+
|
590 |
+
|
591 |
+
# --- Example File Download ---
|
592 |
+
# (Download logic seems okay, ensure 'wget' is installed: pip install wget)
|
593 |
if not os.path.exists("examples"):
|
594 |
os.makedirs("examples")
|
595 |
print("Created 'examples' directory.")
|
|
|
605 |
def download_example_file(filename, url, retries=3):
|
606 |
filepath = os.path.join("examples", filename)
|
607 |
if not os.path.exists(filepath):
|
608 |
+
print(f"Attempting to download {filename}...")
|
609 |
for attempt in range(retries):
|
610 |
try:
|
|
|
611 |
wget.download(url, filepath)
|
612 |
+
print(f"Downloaded {filename} successfully.")
|
613 |
+
return # Exit function on success
|
614 |
except Exception as e:
|
615 |
+
print(f"Download attempt {attempt + 1}/{retries} for {filename} failed: {e}")
|
616 |
+
if os.path.exists(filepath): # Clean up partial download
|
617 |
+
try: os.remove(filepath)
|
618 |
+
except OSError: pass
|
619 |
if attempt + 1 == retries:
|
620 |
print(f"Failed to download {filename} after {retries} attempts.")
|
621 |
+
else:
|
622 |
+
print(f"Example file {filename} already exists.")
|
623 |
+
|
624 |
+
# Trigger downloads
|
625 |
for filename, url in example_files.items():
|
626 |
download_example_file(filename, url)
|
627 |
+
print("Example file check/download complete.")
|
628 |
+
|
629 |
|
630 |
+
# --- Launch App ---
|
631 |
if __name__ == "__main__":
|
632 |
+
print("Launching Gradio Demo...")
|
633 |
+
demo.launch(debug=True) # Keep debug=True
|