Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,16 +5,21 @@ import cv2
|
|
5 |
import numpy as np
|
6 |
from transformers import CLIPProcessor, CLIPModel
|
7 |
from ultralytics import FastSAM
|
8 |
-
|
|
|
9 |
|
10 |
# Load CLIP model
|
11 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
12 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
13 |
|
14 |
-
#
|
15 |
-
|
|
|
16 |
|
17 |
def process_image_clip(image, text_input):
|
|
|
|
|
|
|
18 |
# Process image for CLIP
|
19 |
inputs = processor(
|
20 |
images=image,
|
@@ -32,28 +37,44 @@ def process_image_clip(image, text_input):
|
|
32 |
return f"Confidence that the image contains '{text_input}': {confidence:.2%}"
|
33 |
|
34 |
def process_image_fastsam(image):
|
|
|
|
|
|
|
35 |
# Convert PIL image to numpy array
|
36 |
image_np = np.array(image)
|
37 |
|
38 |
# Run FastSAM inference
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
#
|
43 |
-
|
|
|
44 |
|
45 |
-
|
46 |
-
result_image = prompt_process.plot_to_result()
|
47 |
-
return Image.fromarray(result_image)
|
48 |
|
49 |
# Create Gradio interface
|
50 |
with gr.Blocks() as demo:
|
51 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
with gr.Tab("CLIP Zero-Shot Classification"):
|
54 |
with gr.Row():
|
55 |
image_input = gr.Image(type="pil", label="Input Image")
|
56 |
-
text_input = gr.Textbox(label="What do you want to check in the image?",
|
|
|
57 |
output_text = gr.Textbox(label="Result")
|
58 |
classify_btn = gr.Button("Classify")
|
59 |
classify_btn.click(fn=process_image_clip, inputs=[image_input, text_input], outputs=output_text)
|
@@ -64,6 +85,11 @@ with gr.Blocks() as demo:
|
|
64 |
image_output = gr.Image(type="pil", label="Segmentation Result")
|
65 |
segment_btn = gr.Button("Segment")
|
66 |
segment_btn.click(fn=process_image_fastsam, inputs=[image_input_sam], outputs=image_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
demo.launch()
|
|
|
5 |
import numpy as np
|
6 |
from transformers import CLIPProcessor, CLIPModel
|
7 |
from ultralytics import FastSAM
|
8 |
+
import supervision as sv
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
# Load CLIP model
|
12 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
13 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
14 |
|
15 |
+
# Download and load FastSAM model
|
16 |
+
model_path = hf_hub_download("Jiawei-Yang/FastSAM-x", filename="FastSAM-x.pt")
|
17 |
+
fast_sam = FastSAM(model_path)
|
18 |
|
19 |
def process_image_clip(image, text_input):
|
20 |
+
if image is None:
|
21 |
+
return "Please upload an image first."
|
22 |
+
|
23 |
# Process image for CLIP
|
24 |
inputs = processor(
|
25 |
images=image,
|
|
|
37 |
return f"Confidence that the image contains '{text_input}': {confidence:.2%}"
|
38 |
|
39 |
def process_image_fastsam(image):
|
40 |
+
if image is None:
|
41 |
+
return None
|
42 |
+
|
43 |
# Convert PIL image to numpy array
|
44 |
image_np = np.array(image)
|
45 |
|
46 |
# Run FastSAM inference
|
47 |
+
results = fast_sam(image_np, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
|
48 |
+
|
49 |
+
# Get detections
|
50 |
+
detections = sv.Detections.from_ultralytics(results[0])
|
51 |
+
|
52 |
+
# Create annotator
|
53 |
+
box_annotator = sv.BoxAnnotator()
|
54 |
+
mask_annotator = sv.MaskAnnotator()
|
55 |
|
56 |
+
# Annotate image
|
57 |
+
annotated_image = mask_annotator.annotate(scene=image_np.copy(), detections=detections)
|
58 |
+
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
|
59 |
|
60 |
+
return Image.fromarray(annotated_image)
|
|
|
|
|
61 |
|
62 |
# Create Gradio interface
|
63 |
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("""
|
65 |
+
# CLIP and FastSAM Demo
|
66 |
+
This demo combines two powerful AI models:
|
67 |
+
- **CLIP**: For zero-shot image classification
|
68 |
+
- **FastSAM**: For automatic image segmentation
|
69 |
+
|
70 |
+
Try uploading an image and use either of the tabs below!
|
71 |
+
""")
|
72 |
|
73 |
with gr.Tab("CLIP Zero-Shot Classification"):
|
74 |
with gr.Row():
|
75 |
image_input = gr.Image(type="pil", label="Input Image")
|
76 |
+
text_input = gr.Textbox(label="What do you want to check in the image?",
|
77 |
+
placeholder="e.g., 'a dog', 'sunset', 'people playing'")
|
78 |
output_text = gr.Textbox(label="Result")
|
79 |
classify_btn = gr.Button("Classify")
|
80 |
classify_btn.click(fn=process_image_clip, inputs=[image_input, text_input], outputs=output_text)
|
|
|
85 |
image_output = gr.Image(type="pil", label="Segmentation Result")
|
86 |
segment_btn = gr.Button("Segment")
|
87 |
segment_btn.click(fn=process_image_fastsam, inputs=[image_input_sam], outputs=image_output)
|
88 |
+
|
89 |
+
gr.Markdown("""
|
90 |
+
### How to use:
|
91 |
+
1. **CLIP Classification**: Upload an image and enter text to check if that concept exists in the image
|
92 |
+
2. **FastSAM Segmentation**: Upload an image to get automatic segmentation with bounding boxes and masks
|
93 |
+
""")
|
94 |
|
95 |
+
demo.launch()
|
|