Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,73 +2,73 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
-
from transformers import SamModel, SamProcessor
|
6 |
from PIL import Image
|
7 |
|
8 |
# Set up device
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
# Load model and processor
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def process_mask(mask, target_size):
|
16 |
-
# Ensure mask is 2D
|
17 |
if mask.ndim > 2:
|
18 |
mask = mask.squeeze()
|
19 |
-
|
20 |
-
# If mask is still not 2D, take the first 2D slice
|
21 |
if mask.ndim > 2:
|
22 |
mask = mask[0]
|
23 |
-
|
24 |
-
# Convert to binary
|
25 |
mask = (mask > 0.5).astype(np.uint8) * 255
|
26 |
-
|
27 |
-
# Resize mask to match original image size using PIL
|
28 |
mask_image = Image.fromarray(mask)
|
29 |
mask_image = mask_image.resize(target_size, Image.NEAREST)
|
30 |
-
|
31 |
return np.array(mask_image) > 0
|
32 |
|
33 |
-
def segment_image(input_image,
|
34 |
try:
|
35 |
if input_image is None:
|
36 |
return None, "Please upload an image before submitting."
|
37 |
|
38 |
-
# Convert input_image to PIL Image and ensure it's RGB
|
39 |
input_image = Image.fromarray(input_image).convert("RGB")
|
40 |
-
|
41 |
-
# Store original size
|
42 |
original_size = input_image.size
|
43 |
if not original_size or 0 in original_size:
|
44 |
return None, "Invalid image size. Please upload a different image."
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
# Generate masks
|
55 |
with torch.no_grad():
|
56 |
-
|
57 |
|
58 |
# Post-process masks
|
59 |
-
masks =
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
)
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
combined_mask = process_mask(
|
72 |
|
73 |
# Overlay the mask on the original image
|
74 |
result_image = np.array(input_image)
|
@@ -76,7 +76,7 @@ def segment_image(input_image, segment_anything):
|
|
76 |
mask_rgb[combined_mask] = [255, 0, 0] # Red color for the mask
|
77 |
result_image = cv2.addWeighted(result_image, 1, mask_rgb, 0.5, 0)
|
78 |
|
79 |
-
return result_image, "
|
80 |
|
81 |
except Exception as e:
|
82 |
return None, f"An error occurred: {str(e)}"
|
@@ -86,14 +86,14 @@ iface = gr.Interface(
|
|
86 |
fn=segment_image,
|
87 |
inputs=[
|
88 |
gr.Image(type="numpy", label="Upload an image"),
|
89 |
-
gr.
|
90 |
],
|
91 |
outputs=[
|
92 |
gr.Image(type="numpy", label="Segmented Image"),
|
93 |
gr.Textbox(label="Status")
|
94 |
],
|
95 |
-
title="Segment Anything Model (SAM)
|
96 |
-
description="Upload an image and
|
97 |
)
|
98 |
|
99 |
# Launch the interface
|
|
|
2 |
import torch
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
+
from transformers import SamModel, SamProcessor, BlipProcessor, BlipForConditionalGeneration
|
6 |
from PIL import Image
|
7 |
|
8 |
# Set up device
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
# Load SAM model and processor
|
12 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to(device)
|
13 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
14 |
+
|
15 |
+
# Load BLIP model and processor for image-to-text
|
16 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
17 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
18 |
|
19 |
def process_mask(mask, target_size):
|
|
|
20 |
if mask.ndim > 2:
|
21 |
mask = mask.squeeze()
|
|
|
|
|
22 |
if mask.ndim > 2:
|
23 |
mask = mask[0]
|
|
|
|
|
24 |
mask = (mask > 0.5).astype(np.uint8) * 255
|
|
|
|
|
25 |
mask_image = Image.fromarray(mask)
|
26 |
mask_image = mask_image.resize(target_size, Image.NEAREST)
|
|
|
27 |
return np.array(mask_image) > 0
|
28 |
|
29 |
+
def segment_image(input_image, object_name):
|
30 |
try:
|
31 |
if input_image is None:
|
32 |
return None, "Please upload an image before submitting."
|
33 |
|
|
|
34 |
input_image = Image.fromarray(input_image).convert("RGB")
|
|
|
|
|
35 |
original_size = input_image.size
|
36 |
if not original_size or 0 in original_size:
|
37 |
return None, "Invalid image size. Please upload a different image."
|
38 |
|
39 |
+
# Generate image caption
|
40 |
+
blip_inputs = blip_processor(input_image, return_tensors="pt").to(device)
|
41 |
+
caption = blip_model.generate(**blip_inputs)
|
42 |
+
caption_text = blip_processor.decode(caption[0], skip_special_tokens=True)
|
43 |
+
|
44 |
+
# Process the image with SAM
|
45 |
+
sam_inputs = sam_processor(input_image, return_tensors="pt").to(device)
|
46 |
|
47 |
# Generate masks
|
48 |
with torch.no_grad():
|
49 |
+
sam_outputs = sam_model(**sam_inputs)
|
50 |
|
51 |
# Post-process masks
|
52 |
+
masks = sam_processor.image_processor.post_process_masks(
|
53 |
+
sam_outputs.pred_masks.cpu(),
|
54 |
+
sam_inputs["original_sizes"].cpu(),
|
55 |
+
sam_inputs["reshaped_input_sizes"].cpu()
|
56 |
)
|
57 |
|
58 |
+
# Find the mask that best matches the specified object
|
59 |
+
best_mask = None
|
60 |
+
best_score = -1
|
61 |
+
for mask in masks[0]:
|
62 |
+
mask_binary = mask.numpy() > 0.5
|
63 |
+
mask_area = mask_binary.sum()
|
64 |
+
if object_name.lower() in caption_text.lower() and mask_area > best_score:
|
65 |
+
best_mask = mask_binary
|
66 |
+
best_score = mask_area
|
67 |
+
|
68 |
+
if best_mask is None:
|
69 |
+
return input_image, f"Could not find '{object_name}' in the image."
|
70 |
|
71 |
+
combined_mask = process_mask(best_mask, original_size)
|
72 |
|
73 |
# Overlay the mask on the original image
|
74 |
result_image = np.array(input_image)
|
|
|
76 |
mask_rgb[combined_mask] = [255, 0, 0] # Red color for the mask
|
77 |
result_image = cv2.addWeighted(result_image, 1, mask_rgb, 0.5, 0)
|
78 |
|
79 |
+
return result_image, f"Segmented '{object_name}' in the image."
|
80 |
|
81 |
except Exception as e:
|
82 |
return None, f"An error occurred: {str(e)}"
|
|
|
86 |
fn=segment_image,
|
87 |
inputs=[
|
88 |
gr.Image(type="numpy", label="Upload an image"),
|
89 |
+
gr.Textbox(label="Specify object to segment (e.g., dog, cat, grass)")
|
90 |
],
|
91 |
outputs=[
|
92 |
gr.Image(type="numpy", label="Segmented Image"),
|
93 |
gr.Textbox(label="Status")
|
94 |
],
|
95 |
+
title="Segment Anything Model (SAM) with Object Specification",
|
96 |
+
description="Upload an image and specify an object to segment."
|
97 |
)
|
98 |
|
99 |
# Launch the interface
|