Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import supervision as sv
|
|
9 |
import os
|
10 |
|
11 |
# Load CLIP model
|
12 |
-
model =
|
13 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
14 |
|
15 |
# Initialize FastSAM model
|
@@ -24,30 +24,44 @@ def process_image_clip(image, text_input):
|
|
24 |
if not text_input:
|
25 |
return "Please enter some text to check in the image."
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def process_image_fastsam(image):
|
44 |
if image is None:
|
45 |
return None
|
46 |
|
47 |
-
# Convert PIL image to numpy array
|
48 |
-
image_np = np.array(image)
|
49 |
-
|
50 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# Run FastSAM inference
|
52 |
results = fast_sam(image_np, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
|
53 |
|
@@ -79,7 +93,7 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
|
79 |
|
80 |
with gr.Tab("CLIP Zero-Shot Classification"):
|
81 |
with gr.Row():
|
82 |
-
image_input = gr.Image(
|
83 |
text_input = gr.Textbox(
|
84 |
label="What do you want to check in the image?",
|
85 |
placeholder="e.g., 'a dog', 'sunset', 'people playing'",
|
@@ -88,13 +102,29 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
|
88 |
output_text = gr.Textbox(label="Result")
|
89 |
classify_btn = gr.Button("Classify")
|
90 |
classify_btn.click(fn=process_image_clip, inputs=[image_input, text_input], outputs=output_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
with gr.Tab("FastSAM Segmentation"):
|
93 |
with gr.Row():
|
94 |
-
image_input_sam = gr.Image(
|
95 |
-
image_output = gr.Image(
|
96 |
segment_btn = gr.Button("Segment")
|
97 |
segment_btn.click(fn=process_image_fastsam, inputs=[image_input_sam], outputs=image_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
gr.Markdown("""
|
100 |
### How to use:
|
@@ -106,4 +136,4 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
|
106 |
- For best results, use clear images with good lighting
|
107 |
""")
|
108 |
|
109 |
-
demo.launch()
|
|
|
9 |
import os
|
10 |
|
11 |
# Load CLIP model
|
12 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
13 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
14 |
|
15 |
# Initialize FastSAM model
|
|
|
24 |
if not text_input:
|
25 |
return "Please enter some text to check in the image."
|
26 |
|
27 |
+
try:
|
28 |
+
# Convert numpy array to PIL Image if needed
|
29 |
+
if isinstance(image, np.ndarray):
|
30 |
+
image = Image.fromarray(image)
|
31 |
+
|
32 |
+
# Create a list of candidate labels
|
33 |
+
candidate_labels = [text_input, f"not {text_input}"]
|
34 |
+
|
35 |
+
# Process image and text
|
36 |
+
inputs = processor(
|
37 |
+
images=image,
|
38 |
+
text=candidate_labels,
|
39 |
+
return_tensors="pt",
|
40 |
+
padding=True
|
41 |
+
)
|
42 |
+
|
43 |
+
# Get model predictions
|
44 |
+
outputs = model(**{k: v for k, v in inputs.items()})
|
45 |
+
logits_per_image = outputs.logits_per_image
|
46 |
+
probs = logits_per_image.softmax(dim=1)
|
47 |
+
|
48 |
+
# Get confidence for the positive label
|
49 |
+
confidence = float(probs[0][0])
|
50 |
+
return f"Confidence that the image contains '{text_input}': {confidence:.2%}"
|
51 |
+
except Exception as e:
|
52 |
+
return f"Error processing image: {str(e)}"
|
53 |
|
54 |
def process_image_fastsam(image):
|
55 |
if image is None:
|
56 |
return None
|
57 |
|
|
|
|
|
|
|
58 |
try:
|
59 |
+
# Convert PIL image to numpy array if needed
|
60 |
+
if isinstance(image, Image.Image):
|
61 |
+
image_np = np.array(image)
|
62 |
+
else:
|
63 |
+
image_np = image
|
64 |
+
|
65 |
# Run FastSAM inference
|
66 |
results = fast_sam(image_np, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
|
67 |
|
|
|
93 |
|
94 |
with gr.Tab("CLIP Zero-Shot Classification"):
|
95 |
with gr.Row():
|
96 |
+
image_input = gr.Image(label="Input Image")
|
97 |
text_input = gr.Textbox(
|
98 |
label="What do you want to check in the image?",
|
99 |
placeholder="e.g., 'a dog', 'sunset', 'people playing'",
|
|
|
102 |
output_text = gr.Textbox(label="Result")
|
103 |
classify_btn = gr.Button("Classify")
|
104 |
classify_btn.click(fn=process_image_clip, inputs=[image_input, text_input], outputs=output_text)
|
105 |
+
|
106 |
+
gr.Examples(
|
107 |
+
examples=[
|
108 |
+
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/kitchen/kitchen.png", "kitchen"],
|
109 |
+
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/calculator/calculator.jpg", "calculator"],
|
110 |
+
],
|
111 |
+
inputs=[image_input, text_input],
|
112 |
+
)
|
113 |
|
114 |
with gr.Tab("FastSAM Segmentation"):
|
115 |
with gr.Row():
|
116 |
+
image_input_sam = gr.Image(label="Input Image")
|
117 |
+
image_output = gr.Image(label="Segmentation Result")
|
118 |
segment_btn = gr.Button("Segment")
|
119 |
segment_btn.click(fn=process_image_fastsam, inputs=[image_input_sam], outputs=image_output)
|
120 |
+
|
121 |
+
gr.Examples(
|
122 |
+
examples=[
|
123 |
+
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/kitchen/kitchen.png"],
|
124 |
+
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/calculator/calculator.jpg"],
|
125 |
+
],
|
126 |
+
inputs=[image_input_sam],
|
127 |
+
)
|
128 |
|
129 |
gr.Markdown("""
|
130 |
### How to use:
|
|
|
136 |
- For best results, use clear images with good lighting
|
137 |
""")
|
138 |
|
139 |
+
demo.launch(share=True)
|