sagar007 commited on
Commit
49e0cdb
·
verified ·
1 Parent(s): 2af5758

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -19,7 +19,7 @@ def segment_everything(image):
19
  if isinstance(image, np.ndarray):
20
  image = Image.fromarray(image)
21
 
22
- inputs = processor(text=["object"], images=[image], padding="max_length", return_tensors="pt").to(device)
23
  with torch.no_grad():
24
  outputs = model(**inputs)
25
  preds = outputs.logits.squeeze().sigmoid().cpu()
@@ -35,7 +35,7 @@ def segment_box(image, x1, y1, x2, y2):
35
 
36
  x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
37
  cropped_image = image[y1:y2, x1:x2]
38
- inputs = processor(text=["object"], images=[Image.fromarray(cropped_image)], padding="max_length", return_tensors="pt").to(device)
39
  with torch.no_grad():
40
  outputs = model(**inputs)
41
  preds = outputs.logits.squeeze().sigmoid().cpu()
@@ -57,7 +57,7 @@ def update_image(image, segmentation):
57
 
58
  seg_pil = Image.fromarray(segmentation).convert('RGBA')
59
 
60
- if image_pil.size != seg_pil.size:
61
  seg_pil = seg_pil.resize(image_pil.size, Image.NEAREST)
62
 
63
  blended = Image.blend(image_pil.convert('RGBA'), seg_pil, 0.5)
@@ -96,4 +96,4 @@ with gr.Blocks() as demo:
96
  outputs=[output_image]
97
  )
98
 
99
- demo.launch()
 
19
  if isinstance(image, np.ndarray):
20
  image = Image.fromarray(image)
21
 
22
+ inputs = processor(text=["object"], images=image, padding="max_length", return_tensors="pt").to(device)
23
  with torch.no_grad():
24
  outputs = model(**inputs)
25
  preds = outputs.logits.squeeze().sigmoid().cpu()
 
35
 
36
  x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
37
  cropped_image = image[y1:y2, x1:x2]
38
+ inputs = processor(text=["object"], images=Image.fromarray(cropped_image), padding="max_length", return_tensors="pt").to(device)
39
  with torch.no_grad():
40
  outputs = model(**inputs)
41
  preds = outputs.logits.squeeze().sigmoid().cpu()
 
57
 
58
  seg_pil = Image.fromarray(segmentation).convert('RGBA')
59
 
60
+ if image_pil.size!= seg_pil.size:
61
  seg_pil = seg_pil.resize(image_pil.size, Image.NEAREST)
62
 
63
  blended = Image.blend(image_pil.convert('RGBA'), seg_pil, 0.5)
 
96
  outputs=[output_image]
97
  )
98
 
99
+ demo.launch()