Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,11 +19,19 @@ def segment_image(input_image, text_prompt):
|
|
19 |
# Get the predicted segmentation
|
20 |
preds = outputs.logits.squeeze().sigmoid()
|
21 |
|
22 |
-
# Convert the prediction to a
|
23 |
-
segmentation = (preds
|
24 |
-
segmentation_image = Image.fromarray((segmentation.numpy() * 255).astype(np.uint8))
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Create Gradio interface
|
29 |
iface = gr.Interface(
|
|
|
19 |
# Get the predicted segmentation
|
20 |
preds = outputs.logits.squeeze().sigmoid()
|
21 |
|
22 |
+
# Convert the prediction to a numpy array and scale to 0-255
|
23 |
+
segmentation = (preds.numpy() * 255).astype(np.uint8)
|
|
|
24 |
|
25 |
+
# Create a colored heatmap
|
26 |
+
heatmap = np.zeros((segmentation.shape[0], segmentation.shape[1], 3), dtype=np.uint8)
|
27 |
+
heatmap[:, :, 0] = segmentation # Red channel
|
28 |
+
heatmap[:, :, 2] = 255 - segmentation # Blue channel
|
29 |
+
|
30 |
+
# Blend the heatmap with the original image
|
31 |
+
original_image = np.array(input_image)
|
32 |
+
blended = (0.7 * original_image + 0.3 * heatmap).astype(np.uint8)
|
33 |
+
|
34 |
+
return Image.fromarray(blended)
|
35 |
|
36 |
# Create Gradio interface
|
37 |
iface = gr.Interface(
|