Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ def segment_image(input_image, segment_anything):
|
|
17 |
if input_image is None:
|
18 |
return None, "Please upload an image before submitting."
|
19 |
|
20 |
-
# Convert input_image to PIL Image
|
21 |
input_image = Image.fromarray(input_image).convert("RGB")
|
22 |
|
23 |
# Store original size
|
@@ -25,11 +25,10 @@ def segment_image(input_image, segment_anything):
|
|
25 |
if not original_size or 0 in original_size:
|
26 |
return None, "Invalid image size. Please upload a different image."
|
27 |
|
|
|
28 |
if segment_anything:
|
29 |
-
# Segment everything in the image
|
30 |
inputs = processor(input_image, return_tensors="pt").to(device)
|
31 |
else:
|
32 |
-
# Use the center of the image as a point prompt
|
33 |
width, height = original_size
|
34 |
center_point = [[width // 2, height // 2]]
|
35 |
inputs = processor(input_image, input_points=[center_point], return_tensors="pt").to(device)
|
@@ -45,20 +44,20 @@ def segment_image(input_image, segment_anything):
|
|
45 |
inputs["reshaped_input_sizes"].cpu()
|
46 |
)
|
47 |
|
48 |
-
# Convert mask to numpy array
|
49 |
if segment_anything:
|
50 |
-
# Combine all masks
|
51 |
combined_mask = np.any(masks[0].numpy() > 0.5, axis=0)
|
52 |
else:
|
53 |
-
# Use the first mask
|
54 |
combined_mask = masks[0][0].numpy() > 0.5
|
55 |
|
56 |
# Ensure mask is 2D
|
57 |
if combined_mask.ndim > 2:
|
58 |
combined_mask = combined_mask.squeeze()
|
59 |
|
60 |
-
# Resize mask to match original image size
|
61 |
-
|
|
|
|
|
62 |
|
63 |
# Overlay the mask on the original image
|
64 |
result_image = np.array(input_image)
|
|
|
17 |
if input_image is None:
|
18 |
return None, "Please upload an image before submitting."
|
19 |
|
20 |
+
# Convert input_image to PIL Image and ensure it's RGB
|
21 |
input_image = Image.fromarray(input_image).convert("RGB")
|
22 |
|
23 |
# Store original size
|
|
|
25 |
if not original_size or 0 in original_size:
|
26 |
return None, "Invalid image size. Please upload a different image."
|
27 |
|
28 |
+
# Process the image
|
29 |
if segment_anything:
|
|
|
30 |
inputs = processor(input_image, return_tensors="pt").to(device)
|
31 |
else:
|
|
|
32 |
width, height = original_size
|
33 |
center_point = [[width // 2, height // 2]]
|
34 |
inputs = processor(input_image, input_points=[center_point], return_tensors="pt").to(device)
|
|
|
44 |
inputs["reshaped_input_sizes"].cpu()
|
45 |
)
|
46 |
|
47 |
+
# Convert mask to numpy array
|
48 |
if segment_anything:
|
|
|
49 |
combined_mask = np.any(masks[0].numpy() > 0.5, axis=0)
|
50 |
else:
|
|
|
51 |
combined_mask = masks[0][0].numpy() > 0.5
|
52 |
|
53 |
# Ensure mask is 2D
|
54 |
if combined_mask.ndim > 2:
|
55 |
combined_mask = combined_mask.squeeze()
|
56 |
|
57 |
+
# Resize mask to match original image size using PIL
|
58 |
+
mask_image = Image.fromarray((combined_mask * 255).astype(np.uint8))
|
59 |
+
mask_image = mask_image.resize(original_size, Image.NEAREST)
|
60 |
+
combined_mask = np.array(mask_image) > 0
|
61 |
|
62 |
# Overlay the mask on the original image
|
63 |
result_image = np.array(input_image)
|