Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,67 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
import numpy as np
|
4 |
-
from PIL import Image
|
|
|
5 |
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
6 |
-
import traceback
|
7 |
|
8 |
# Load the CLIPSeg model and processor
|
9 |
processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
11 |
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
max_size = 1024
|
20 |
-
if max(input_image.size) > max_size:
|
21 |
-
input_image.thumbnail((max_size, max_size))
|
22 |
-
|
23 |
-
# Preprocess the image
|
24 |
-
inputs = processor(text=[text_prompt], images=[input_image], padding="max_length", return_tensors="pt")
|
25 |
-
|
26 |
-
# Perform segmentation
|
27 |
-
with torch.no_grad():
|
28 |
-
outputs = model(**inputs)
|
29 |
-
|
30 |
-
# Get the predicted segmentation
|
31 |
-
preds = outputs.logits.squeeze().sigmoid()
|
32 |
-
|
33 |
-
# Convert the prediction to a numpy array and scale to 0-255
|
34 |
-
segmentation = (preds.numpy() * 255).astype(np.uint8)
|
35 |
-
|
36 |
-
# Resize segmentation to match input image size
|
37 |
-
segmentation = Image.fromarray(segmentation).resize(input_image.size)
|
38 |
-
segmentation = np.array(segmentation)
|
39 |
-
|
40 |
-
# Create a colored heatmap
|
41 |
-
heatmap = np.zeros((segmentation.shape[0], segmentation.shape[1], 3), dtype=np.uint8)
|
42 |
-
heatmap[:, :, 0] = segmentation # Red channel
|
43 |
-
heatmap[:, :, 2] = 255 - segmentation # Blue channel
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
gr.
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import torch
|
5 |
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
|
|
6 |
|
7 |
# Load the CLIPSeg model and processor
|
8 |
processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
9 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
|
11 |
+
def segment_everything(image):
|
12 |
+
inputs = processor(text=["object"], images=[image], padding="max_length", return_tensors="pt")
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(**inputs)
|
15 |
+
preds = outputs.logits.squeeze().sigmoid()
|
16 |
+
segmentation = (preds.numpy() * 255).astype(np.uint8)
|
17 |
+
return Image.fromarray(segmentation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
def segment_box(image, box):
|
20 |
+
x1, y1, x2, y2 = map(int, box)
|
21 |
+
mask = Image.new('L', image.size, 0)
|
22 |
+
draw = ImageDraw.Draw(mask)
|
23 |
+
draw.rectangle([x1, y1, x2, y2], fill=255)
|
24 |
+
|
25 |
+
inputs = processor(text=["object in box"], images=[image], mask_pixels=mask, padding="max_length", return_tensors="pt")
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(**inputs)
|
28 |
+
preds = outputs.logits.squeeze().sigmoid()
|
29 |
+
segmentation = (preds.numpy() * 255).astype(np.uint8)
|
30 |
+
return Image.fromarray(segmentation)
|
31 |
|
32 |
+
def update_image(image, segmentation, tool):
|
33 |
+
if segmentation is None:
|
34 |
+
return image
|
35 |
+
blended = Image.blend(image.convert('RGBA'), segmentation.convert('RGBA'), 0.5)
|
36 |
+
return blended
|
37 |
|
38 |
+
with gr.Blocks() as demo:
|
39 |
+
gr.Markdown("# Segment Anything-like Demo")
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column(scale=1):
|
42 |
+
input_image = gr.Image(label="Input Image", tool="select")
|
43 |
+
with gr.Row():
|
44 |
+
everything_btn = gr.Button("Everything")
|
45 |
+
box_btn = gr.Button("Box")
|
46 |
+
with gr.Column(scale=1):
|
47 |
+
output_image = gr.Image(label="Segmentation Result")
|
48 |
+
|
49 |
+
everything_btn.click(
|
50 |
+
fn=segment_everything,
|
51 |
+
inputs=[input_image],
|
52 |
+
outputs=[output_image]
|
53 |
+
)
|
54 |
+
|
55 |
+
box_btn.click(
|
56 |
+
fn=segment_box,
|
57 |
+
inputs=[input_image, input_image.sel],
|
58 |
+
outputs=[output_image]
|
59 |
+
)
|
60 |
+
|
61 |
+
output_image.change(
|
62 |
+
fn=update_image,
|
63 |
+
inputs=[input_image, output_image, gr.State("last_tool")],
|
64 |
+
outputs=[output_image]
|
65 |
+
)
|
66 |
|
67 |
+
demo.launch()
|
|