Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,69 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import numpy as np
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
-
import
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
# Load
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
fig.savefig(buf)
|
18 |
-
buf.seek(0)
|
19 |
-
img = Image.open(buf)
|
20 |
-
return img
|
21 |
|
22 |
-
def
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
ax.imshow(masked, alpha=0.5, cmap=plt.cm.get_cmap('jet'))
|
29 |
-
ax.axis('off')
|
30 |
-
plt.close()
|
31 |
-
return fig2img(fig)
|
32 |
|
33 |
-
def
|
34 |
-
|
35 |
-
|
36 |
-
return None, "Please upload an image before submitting."
|
37 |
-
|
38 |
-
input_image = Image.fromarray(input_image).convert("RGB")
|
39 |
-
|
40 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
41 |
-
predictor.set_image(input_image)
|
42 |
-
# Use 'everything' prompt
|
43 |
-
masks, _, _ = predictor.predict([])
|
44 |
-
|
45 |
-
# Plot the results
|
46 |
-
result_image = plot_masks(input_image, masks)
|
47 |
-
|
48 |
-
return result_image, f"Segmented everything in the image. Found {len(masks)} objects."
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Create Gradio interface
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
gr.Textbox(label="
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
)
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from PIL import Image
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from transformers import CLIPProcessor, CLIPModel
|
7 |
+
from ultralytics import FastSAM
|
8 |
+
from ultralytics.models.fastsam import FastSAMPrompt
|
|
|
9 |
|
10 |
+
# Load CLIP model
|
11 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
12 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
13 |
|
14 |
+
# Load FastSAM model
|
15 |
+
fast_sam = FastSAM('FastSAM-x.pt')
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def process_image_clip(image, text_input):
|
18 |
+
# Process image for CLIP
|
19 |
+
inputs = processor(
|
20 |
+
images=image,
|
21 |
+
text=[text_input],
|
22 |
+
return_tensors="pt",
|
23 |
+
padding=True
|
24 |
+
)
|
25 |
+
|
26 |
+
# Get model predictions
|
27 |
+
outputs = model(**inputs)
|
28 |
+
logits_per_image = outputs.logits_per_image
|
29 |
+
probs = logits_per_image.softmax(dim=1)
|
30 |
|
31 |
+
confidence = float(probs[0][0])
|
32 |
+
return f"Confidence that the image contains '{text_input}': {confidence:.2%}"
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
def process_image_fastsam(image):
|
35 |
+
# Convert PIL image to numpy array
|
36 |
+
image_np = np.array(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Run FastSAM inference
|
39 |
+
everything_results = fast_sam(image_np, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
|
40 |
+
prompt_process = FastSAMPrompt(image_np, everything_results, device='cpu')
|
41 |
+
|
42 |
+
# Get everything mask
|
43 |
+
ann = prompt_process.everything()
|
44 |
+
|
45 |
+
# Convert annotation to image
|
46 |
+
result_image = prompt_process.plot_to_result()
|
47 |
+
return Image.fromarray(result_image)
|
48 |
|
49 |
# Create Gradio interface
|
50 |
+
with gr.Blocks() as demo:
|
51 |
+
gr.Markdown("# CLIP and FastSAM Demo")
|
52 |
+
|
53 |
+
with gr.Tab("CLIP Zero-Shot Classification"):
|
54 |
+
with gr.Row():
|
55 |
+
image_input = gr.Image(type="pil", label="Input Image")
|
56 |
+
text_input = gr.Textbox(label="What do you want to check in the image?", placeholder="Type here...")
|
57 |
+
output_text = gr.Textbox(label="Result")
|
58 |
+
classify_btn = gr.Button("Classify")
|
59 |
+
classify_btn.click(fn=process_image_clip, inputs=[image_input, text_input], outputs=output_text)
|
60 |
+
|
61 |
+
with gr.Tab("FastSAM Segmentation"):
|
62 |
+
with gr.Row():
|
63 |
+
image_input_sam = gr.Image(type="pil", label="Input Image")
|
64 |
+
image_output = gr.Image(type="pil", label="Segmentation Result")
|
65 |
+
segment_btn = gr.Button("Segment")
|
66 |
+
segment_btn.click(fn=process_image_fastsam, inputs=[image_input_sam], outputs=image_output)
|
67 |
|
68 |
+
if __name__ == "__main__":
|
69 |
+
demo.launch()
|