Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import gradio as gr
|
2 |
import PIL
|
3 |
import torch
|
4 |
import numpy as np
|
@@ -13,7 +12,7 @@ torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.ba
|
|
13 |
height, width = 512, 512
|
14 |
guidance_scale = 8
|
15 |
loss_scale = 200
|
16 |
-
num_inference_steps =
|
17 |
|
18 |
|
19 |
model_path = "CompVis/stable-diffusion-v1-4"
|
@@ -42,109 +41,168 @@ styles_mapping = {
|
|
42 |
|
43 |
# Define seeds for all the styles
|
44 |
seed_list = [11, 56, 110, 65, 5, 29, 47]
|
45 |
-
|
|
|
46 |
def edge_detection(image):
|
47 |
channels = image.shape[1]
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
if loss_type == 'blue':
|
57 |
-
|
|
|
|
|
58 |
elif loss_type == 'edge':
|
59 |
-
|
60 |
-
|
61 |
elif loss_type == 'contrast':
|
62 |
-
|
63 |
-
|
|
|
64 |
elif loss_type == 'brightness':
|
65 |
-
|
66 |
-
|
|
|
67 |
elif loss_type == 'sharpness':
|
68 |
-
|
69 |
-
|
|
|
70 |
elif loss_type == 'saturation':
|
71 |
-
|
72 |
-
|
|
|
73 |
else:
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
# Optimized generate_image function
|
77 |
def generate_image(seed, prompt, loss_type, loss_flag=False):
|
78 |
-
generator = torch.manual_seed(seed)
|
79 |
-
batch_size = 1
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
|
|
|
|
|
|
83 |
latents = torch.randn(
|
84 |
-
(batch_size, sd_pipeline.unet.config.in_channels, height
|
85 |
-
generator=generator,
|
86 |
-
).to(
|
|
|
87 |
|
88 |
-
latents = latents
|
|
|
89 |
|
90 |
-
|
91 |
|
92 |
-
for i, t in enumerate(tqdm(sd_pipeline.scheduler.timesteps)):
|
93 |
latent_model_input = torch.cat([latents] * 2)
|
94 |
-
|
|
|
95 |
|
96 |
with torch.no_grad():
|
97 |
-
noise_pred = sd_pipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)
|
98 |
|
99 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
100 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
101 |
|
102 |
-
if loss_flag and i
|
|
|
103 |
latents = latents.detach().requires_grad_()
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
|
108 |
loss = compute_loss(denoised_images, loss_type) * loss_scale
|
109 |
-
|
|
|
110 |
|
111 |
cond_grad = torch.autograd.grad(loss, latents)[0]
|
112 |
-
latents = latents.detach() - cond_grad *
|
113 |
|
114 |
-
latents =
|
115 |
|
116 |
-
return latents
|
117 |
-
|
118 |
-
def generate_image(prompt, style, guidance_type):
|
119 |
-
styled_prompt = f"{prompt} in the style of {styles_mapping[style]}"
|
120 |
-
seed = torch.randint(0, 1000000, (1,)).item()
|
121 |
-
latents = generate_image(seed, styled_prompt, guidance_type, loss_flag=True)
|
122 |
-
with torch.no_grad():
|
123 |
-
image = sd_pipeline.decode_latents(latents)
|
124 |
-
image = sd_pipeline.numpy_to_pil(image)[0]
|
125 |
-
return image
|
126 |
-
|
127 |
-
def get_examples():
|
128 |
-
examples = [
|
129 |
-
["A bird sitting on a tree", "Midjourney", "edge"],
|
130 |
-
["Cats fighting on the road", "Marc Allante", "brightness"],
|
131 |
-
["A mouse with the head of a puppy", "Hitokomoru Style", "contrast"],
|
132 |
-
["A woman with a smiling face in front of an Italian Pizza", "Hanfu Anime", "brightness"],
|
133 |
-
["A campfire (oil on canvas)", "Birb Style", "blue"],
|
134 |
-
]
|
135 |
-
return examples
|
136 |
-
|
137 |
-
iface = gr.Interface(
|
138 |
-
fn=generate_image,
|
139 |
-
inputs=[
|
140 |
-
gr.Textbox(label="Prompt"),
|
141 |
-
gr.Dropdown(list(styles_mapping.keys()), label="Style"),
|
142 |
-
gr.Dropdown(["blue", "edge", "contrast", "brightness", "sharpness", "saturation"], label="Guidance Type"),
|
143 |
-
],
|
144 |
-
outputs=gr.Image(label="Generated Image"),
|
145 |
-
title="Stable Diffusion with Custom Styles",
|
146 |
-
description="Generate images using a custom Stable Diffusion model with various styles and guidance types.",
|
147 |
-
examples=get_examples(),
|
148 |
-
)
|
149 |
-
|
150 |
-
iface.launch()
|
|
|
|
|
1 |
import PIL
|
2 |
import torch
|
3 |
import numpy as np
|
|
|
12 |
height, width = 512, 512
|
13 |
guidance_scale = 8
|
14 |
loss_scale = 200
|
15 |
+
num_inference_steps = 50
|
16 |
|
17 |
|
18 |
model_path = "CompVis/stable-diffusion-v1-4"
|
|
|
41 |
|
42 |
# Define seeds for all the styles
|
43 |
seed_list = [11, 56, 110, 65, 5, 29, 47]
|
44 |
+
|
45 |
+
# Loss Function based on Edge Detection
|
46 |
def edge_detection(image):
|
47 |
channels = image.shape[1]
|
48 |
+
|
49 |
+
# Define the kernels for Edge Detection
|
50 |
+
ed_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
51 |
+
ed_y = torch.tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
52 |
+
|
53 |
+
# Replicate the Edge detection kernels for each channel
|
54 |
+
ed_x = ed_x.repeat(channels, 1, 1, 1).to(image.device)
|
55 |
+
ed_y = ed_y.repeat(channels, 1, 1, 1).to(image.device)
|
56 |
+
|
57 |
+
# ed_x = ed_x.to(torch.float16)
|
58 |
+
# ed_y = ed_y.to(torch.float16)
|
59 |
+
|
60 |
+
# Convolve the image with the Edge detection kernels
|
61 |
+
conv_ed_x = F.conv2d(image, ed_x, padding=1, groups=channels)
|
62 |
+
conv_ed_y = F.conv2d(image, ed_y, padding=1, groups=channels)
|
63 |
+
|
64 |
+
# Combine the x and y gradients after convolution
|
65 |
+
ed_value = torch.sqrt(conv_ed_x**2 + conv_ed_y**2)
|
66 |
+
|
67 |
+
return ed_value
|
68 |
+
|
69 |
+
def edge_loss(image):
|
70 |
+
ed_value = edge_detection(image)
|
71 |
+
ed_capped = (ed_value > 0.5).to(torch.float32)
|
72 |
+
return F.mse_loss(ed_value, ed_capped)
|
73 |
+
|
74 |
+
def compute_loss(original_image, loss_type):
|
75 |
+
|
76 |
if loss_type == 'blue':
|
77 |
+
# blue loss
|
78 |
+
# [:,2] -> all images in batch, only the blue channel
|
79 |
+
error = torch.abs(original_image[:,2] - 0.9).mean()
|
80 |
elif loss_type == 'edge':
|
81 |
+
# edge loss
|
82 |
+
error = edge_loss(original_image)
|
83 |
elif loss_type == 'contrast':
|
84 |
+
# RGB to Gray loss
|
85 |
+
transformed_image = T.functional.adjust_contrast(original_image, contrast_factor = 2)
|
86 |
+
error = torch.abs(transformed_image - original_image).mean()
|
87 |
elif loss_type == 'brightness':
|
88 |
+
# brightnesss loss
|
89 |
+
transformed_image = T.functional.adjust_brightness(original_image, brightness_factor = 2)
|
90 |
+
error = torch.abs(transformed_image - original_image).mean()
|
91 |
elif loss_type == 'sharpness':
|
92 |
+
# sharpness loss
|
93 |
+
transformed_image = T.functional.adjust_sharpness(original_image, sharpness_factor = 2)
|
94 |
+
error = torch.abs(transformed_image - original_image).mean()
|
95 |
elif loss_type == 'saturation':
|
96 |
+
# saturation loss
|
97 |
+
transformed_image = T.functional.adjust_saturation(original_image, saturation_factor = 10)
|
98 |
+
error = torch.abs(transformed_image - original_image).mean()
|
99 |
else:
|
100 |
+
print("error. Loss not defined")
|
101 |
+
|
102 |
+
return error
|
103 |
+
|
104 |
+
|
105 |
+
def get_examples():
|
106 |
+
examples = [
|
107 |
+
['A bird sitting on a tree', 'Midjourney', 'edge', 5],
|
108 |
+
['Cats fighting on the road', 'Marc Allante', 'brightness', 65],
|
109 |
+
['A mouse with the head of a puppy', 'Hitokomoru Style', 'contrast', 110],
|
110 |
+
['A woman with a smiling face in front of an Italian Pizza', 'Hanfu Anime', 'brightness', 29],
|
111 |
+
['A campfire (oil on canvas)', 'Birb Style', 'blue', 47],
|
112 |
+
]
|
113 |
+
return(examples)
|
114 |
+
|
115 |
+
|
116 |
+
def latents_to_pil(latents):
|
117 |
+
# bath of latents -> list of images
|
118 |
+
latents = (1 / 0.18215) * latents
|
119 |
+
with torch.no_grad():
|
120 |
+
image = sd_pipeline.vae.decode(latents).sample
|
121 |
+
image = (image / 2 + 0.5).clamp(0, 1) # 0 to 1
|
122 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
123 |
+
image = (image * 255).round().astype("uint8")
|
124 |
+
return Image.fromarray(image[0])
|
125 |
+
|
126 |
+
|
127 |
+
def show_image(prompt, concept, guidance_type):
|
128 |
+
|
129 |
+
for idx, sd in enumerate(styles_mapping.keys()):
|
130 |
+
if(sd == concept):
|
131 |
+
break
|
132 |
+
seed = seed_list[idx]
|
133 |
+
prompt = f"{prompt} in the style of {styles_mapping[sd]}"
|
134 |
+
styled_image_without_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=False))
|
135 |
+
styled_image_with_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=True))
|
136 |
+
return([styled_image_without_loss, styled_image_with_loss])
|
137 |
+
|
138 |
|
|
|
139 |
def generate_image(seed, prompt, loss_type, loss_flag=False):
|
|
|
|
|
140 |
|
141 |
+
generator = torch.manual_seed(seed)
|
142 |
+
batch_size = 1
|
143 |
+
|
144 |
+
# scheduler
|
145 |
+
scheduler = LMSDiscreteScheduler(beta_start = 0.00085, beta_end = 0.012, beta_schedule = "scaled_linear", num_train_timesteps = 1000)
|
146 |
+
scheduler.set_timesteps(num_inference_steps)
|
147 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
148 |
+
|
149 |
+
# text embeddings of the prompt
|
150 |
+
text_input = sd_pipeline.tokenizer(prompt, padding='max_length', max_length = sd_pipeline.tokenizer.model_max_length, truncation= True, return_tensors="pt")
|
151 |
+
input_ids = text_input.input_ids.to(torch_device)
|
152 |
+
|
153 |
+
with torch.no_grad():
|
154 |
+
text_embeddings = sd_pipeline.text_encoder(text_input.input_ids.to(torch_device))[0]
|
155 |
+
|
156 |
+
max_length = text_input.input_ids.shape[-1]
|
157 |
+
uncond_input = sd_pipeline.tokenizer(
|
158 |
+
[""] * batch_size, padding="max_length", max_length= max_length, return_tensors="pt"
|
159 |
+
)
|
160 |
+
|
161 |
+
with torch.no_grad():
|
162 |
+
uncond_embeddings = sd_pipeline.text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
163 |
|
164 |
+
text_embeddings = torch.cat([uncond_embeddings,text_embeddings]) # shape: 2,77,768
|
165 |
+
|
166 |
+
# random latent
|
167 |
latents = torch.randn(
|
168 |
+
(batch_size, sd_pipeline.unet.config.in_channels, height// 8, width //8),
|
169 |
+
generator = generator,
|
170 |
+
) .to(torch.float32)
|
171 |
+
|
172 |
|
173 |
+
latents = latents.to(torch_device)
|
174 |
+
latents = latents * scheduler.init_noise_sigma
|
175 |
|
176 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total = len(scheduler.timesteps)):
|
177 |
|
|
|
178 |
latent_model_input = torch.cat([latents] * 2)
|
179 |
+
sigma = scheduler.sigmas[i]
|
180 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
181 |
|
182 |
with torch.no_grad():
|
183 |
+
noise_pred = sd_pipeline.unet(latent_model_input.to(torch.float32), t, encoder_hidden_states=text_embeddings)["sample"]
|
184 |
|
185 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
186 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
187 |
|
188 |
+
if loss_flag and i%5 == 0:
|
189 |
+
|
190 |
latents = latents.detach().requires_grad_()
|
191 |
+
# the following line alone does not work, it requires change to reduce step only once
|
192 |
+
# hence commenting it out
|
193 |
+
#latents_x0 = scheduler.step(noise_pred,t, latents).pred_original_sample
|
194 |
+
latents_x0 = latents - sigma * noise_pred
|
195 |
+
|
196 |
+
# use vae to decode the image
|
197 |
+
denoised_images = sd_pipeline.vae.decode((1/ 0.18215) * latents_x0).sample / 2 + 0.5 # range(0,1)
|
198 |
|
199 |
loss = compute_loss(denoised_images, loss_type) * loss_scale
|
200 |
+
#loss = loss.to(torch.float16)
|
201 |
+
print(f"{i} loss {loss}")
|
202 |
|
203 |
cond_grad = torch.autograd.grad(loss, latents)[0]
|
204 |
+
latents = latents.detach() - cond_grad * sigma**2
|
205 |
|
206 |
+
latents = scheduler.step(noise_pred,t, latents).prev_sample
|
207 |
|
208 |
+
return latents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|