sagar007 commited on
Commit
df100ff
·
verified ·
1 Parent(s): 3953f0b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +236 -0
app.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import PIL
3
+ import torch
4
+ import numpy as np
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
+ import torch.nn.functional as F
8
+ import torchvision.transforms as T
9
+ from diffusers import LMSDiscreteScheduler, DiffusionPipeline
10
+
11
+ # configurations
12
+ torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
13
+ height, width = 512, 512
14
+ guidance_scale = 8
15
+ loss_scale = 200
16
+ num_inference_steps = 50
17
+
18
+
19
+ model_path = "CompVis/stable-diffusion-v1-4"
20
+ sd_pipeline = DiffusionPipeline.from_pretrained(
21
+ model_path,
22
+ low_cpu_mem_usage = True,
23
+ torch_dtype=torch.float32
24
+ ).to(torch_device)
25
+
26
+
27
+ sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
28
+ sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
29
+ sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
30
+ sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
31
+ sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
32
+ sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
33
+ sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
34
+
35
+
36
+ styles_mapping = {
37
+ "Illustration Style": '<illustration-style>', "Line Art":'<line-art>',
38
+ "Hitokomoru Style":'<hitokomoru-style-nao>', "Marc Allante": '<Marc_Allante>',
39
+ "Midjourney":'<midjourney-style>', "Hanfu Anime": '<hanfu-anime-style>',
40
+ "Birb Style": '<birb-style>'
41
+ }
42
+
43
+ # Define seeds for all the styles
44
+ seed_list = [11, 56, 110, 65, 5, 29, 47]
45
+
46
+ # Loss Function based on Edge Detection
47
+ def edge_detection(image):
48
+ channels = image.shape[1]
49
+
50
+ # Define the kernels for Edge Detection
51
+ ed_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)
52
+ ed_y = torch.tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)
53
+
54
+ # Replicate the Edge detection kernels for each channel
55
+ ed_x = ed_x.repeat(channels, 1, 1, 1).to(image.device)
56
+ ed_y = ed_y.repeat(channels, 1, 1, 1).to(image.device)
57
+
58
+ # ed_x = ed_x.to(torch.float16)
59
+ # ed_y = ed_y.to(torch.float16)
60
+
61
+ # Convolve the image with the Edge detection kernels
62
+ conv_ed_x = F.conv2d(image, ed_x, padding=1, groups=channels)
63
+ conv_ed_y = F.conv2d(image, ed_y, padding=1, groups=channels)
64
+
65
+ # Combine the x and y gradients after convolution
66
+ ed_value = torch.sqrt(conv_ed_x**2 + conv_ed_y**2)
67
+
68
+ return ed_value
69
+
70
+ def edge_loss(image):
71
+ ed_value = edge_detection(image)
72
+ ed_capped = (ed_value > 0.5).to(torch.float32)
73
+ return F.mse_loss(ed_value, ed_capped)
74
+
75
+ def compute_loss(original_image, loss_type):
76
+
77
+ if loss_type == 'blue':
78
+ # blue loss
79
+ # [:,2] -> all images in batch, only the blue channel
80
+ error = torch.abs(original_image[:,2] - 0.9).mean()
81
+ elif loss_type == 'edge':
82
+ # edge loss
83
+ error = edge_loss(original_image)
84
+ elif loss_type == 'contrast':
85
+ # RGB to Gray loss
86
+ transformed_image = T.functional.adjust_contrast(original_image, contrast_factor = 2)
87
+ error = torch.abs(transformed_image - original_image).mean()
88
+ elif loss_type == 'brightness':
89
+ # brightnesss loss
90
+ transformed_image = T.functional.adjust_brightness(original_image, brightness_factor = 2)
91
+ error = torch.abs(transformed_image - original_image).mean()
92
+ elif loss_type == 'sharpness':
93
+ # sharpness loss
94
+ transformed_image = T.functional.adjust_sharpness(original_image, sharpness_factor = 2)
95
+ error = torch.abs(transformed_image - original_image).mean()
96
+ elif loss_type == 'saturation':
97
+ # saturation loss
98
+ transformed_image = T.functional.adjust_saturation(original_image, saturation_factor = 10)
99
+ error = torch.abs(transformed_image - original_image).mean()
100
+ else:
101
+ print("error. Loss not defined")
102
+
103
+ return error
104
+
105
+
106
+
107
+ def get_examples():
108
+ examples = [
109
+ ['A bird sitting on a tree', 'Midjourney', 'edge'],
110
+ ['Cats fighting on the road', 'Marc Allante', 'brightness'],
111
+ ['A mouse with the head of a puppy', 'Hitokomoru Style', 'contrast'],
112
+ ['A woman with a smiling face in front of an Italian Pizza', 'Hanfu Anime', 'brightness'],
113
+ ['A campfire (oil on canvas)', 'Birb Style', 'blue'],
114
+ ]
115
+ return examples
116
+
117
+ # Existing functions (latents_to_pil, show_image, generate_image)
118
+ # ... (Copy all the existing functions here)
119
+ def latents_to_pil(latents):
120
+ # bath of latents -> list of images
121
+ latents = (1 / 0.18215) * latents
122
+ with torch.no_grad():
123
+ image = sd_pipeline.vae.decode(latents).sample
124
+ image = (image / 2 + 0.5).clamp(0, 1) # 0 to 1
125
+ image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
126
+ image = (image * 255).round().astype("uint8")
127
+ return Image.fromarray(image[0])
128
+
129
+
130
+ def show_image(prompt, concept, guidance_type):
131
+
132
+ for idx, sd in enumerate(styles_mapping.keys()):
133
+ if(sd == concept):
134
+ break
135
+ seed = seed_list[idx]
136
+ prompt = f"{prompt} in the style of {styles_mapping[sd]}"
137
+ styled_image_without_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=False))
138
+ styled_image_with_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=True))
139
+ return([styled_image_without_loss, styled_image_with_loss])
140
+
141
+
142
+ def generate_image(seed, prompt, loss_type, loss_flag=False):
143
+
144
+ generator = torch.manual_seed(seed)
145
+ batch_size = 1
146
+
147
+ # scheduler
148
+ scheduler = LMSDiscreteScheduler(beta_start = 0.00085, beta_end = 0.012, beta_schedule = "scaled_linear", num_train_timesteps = 1000)
149
+ scheduler.set_timesteps(num_inference_steps)
150
+ scheduler.timesteps = scheduler.timesteps.to(torch.float32)
151
+
152
+ # text embeddings of the prompt
153
+ text_input = sd_pipeline.tokenizer(prompt, padding='max_length', max_length = sd_pipeline.tokenizer.model_max_length, truncation= True, return_tensors="pt")
154
+ input_ids = text_input.input_ids.to(torch_device)
155
+
156
+ with torch.no_grad():
157
+ text_embeddings = sd_pipeline.text_encoder(text_input.input_ids.to(torch_device))[0]
158
+
159
+ max_length = text_input.input_ids.shape[-1]
160
+ uncond_input = sd_pipeline.tokenizer(
161
+ [""] * batch_size, padding="max_length", max_length= max_length, return_tensors="pt"
162
+ )
163
+
164
+ with torch.no_grad():
165
+ uncond_embeddings = sd_pipeline.text_encoder(uncond_input.input_ids.to(torch_device))[0]
166
+
167
+ text_embeddings = torch.cat([uncond_embeddings,text_embeddings]) # shape: 2,77,768
168
+
169
+ # random latent
170
+ latents = torch.randn(
171
+ (batch_size, sd_pipeline.unet.config.in_channels, height// 8, width //8),
172
+ generator = generator,
173
+ ) .to(torch.float32)
174
+
175
+
176
+ latents = latents.to(torch_device)
177
+ latents = latents * scheduler.init_noise_sigma
178
+
179
+ for i, t in tqdm(enumerate(scheduler.timesteps), total = len(scheduler.timesteps)):
180
+
181
+ latent_model_input = torch.cat([latents] * 2)
182
+ sigma = scheduler.sigmas[i]
183
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
184
+
185
+ with torch.no_grad():
186
+ noise_pred = sd_pipeline.unet(latent_model_input.to(torch.float32), t, encoder_hidden_states=text_embeddings)["sample"]
187
+
188
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
189
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
190
+
191
+ if loss_flag and i%5 == 0:
192
+
193
+ latents = latents.detach().requires_grad_()
194
+ # the following line alone does not work, it requires change to reduce step only once
195
+ # hence commenting it out
196
+ #latents_x0 = scheduler.step(noise_pred,t, latents).pred_original_sample
197
+ latents_x0 = latents - sigma * noise_pred
198
+
199
+ # use vae to decode the image
200
+ denoised_images = sd_pipeline.vae.decode((1/ 0.18215) * latents_x0).sample / 2 + 0.5 # range(0,1)
201
+
202
+ loss = compute_loss(denoised_images, loss_type) * loss_scale
203
+ #loss = loss.to(torch.float16)
204
+ print(f"{i} loss {loss}")
205
+
206
+ cond_grad = torch.autograd.grad(loss, latents)[0]
207
+ latents = latents.detach() - cond_grad * sigma**2
208
+
209
+ latents = scheduler.step(noise_pred,t, latents).prev_sample
210
+
211
+ return latents
212
+
213
+ # Gradio interface function
214
+ def generate_images(prompt, style, guidance_type):
215
+ images = show_image(prompt, style, guidance_type)
216
+ return images[0], images[1]
217
+
218
+ # Create Gradio interface
219
+ iface = gr.Interface(
220
+ fn=generate_images,
221
+ inputs=[
222
+ gr.Textbox(label="Prompt"),
223
+ gr.Dropdown(list(styles_mapping.keys()), label="Style"),
224
+ gr.Dropdown(["blue", "edge", "contrast", "brightness", "sharpness", "saturation"], label="Guidance Type"),
225
+ ],
226
+ outputs=[
227
+ gr.Image(label="Image without Loss"),
228
+ gr.Image(label="Image with Loss"),
229
+ ],
230
+ examples=get_examples(),
231
+ title="Text Inversion Image Generation",
232
+ description="Generate images using text inversion with different styles and guidance types.",
233
+ )
234
+
235
+ # Launch the app
236
+ iface.launch()