File size: 5,573 Bytes
c9e151d
 
 
 
 
 
11a9884
ae24526
380d0cf
63b02f7
 
11a9884
c9e151d
 
 
 
 
 
 
32f55fb
c9e151d
5b2b4ac
c9e151d
 
 
 
 
 
 
 
 
 
 
63b02f7
c9e151d
 
 
 
 
 
 
 
 
 
 
63b02f7
c9e151d
 
 
63b02f7
c9e151d
 
 
 
 
380d0cf
 
 
 
 
63b02f7
0a69092
63b02f7
 
 
 
0a69092
63b02f7
 
 
0a69092
 
 
 
63b02f7
0a69092
 
 
 
 
63b02f7
0a69092
 
63b02f7
 
0a69092
63b02f7
0a69092
63b02f7
 
0a69092
 
 
 
 
 
63b02f7
0a69092
 
63b02f7
0a69092
 
 
 
 
63b02f7
0a69092
 
63b02f7
0a69092
 
 
 
 
 
63b02f7
0a69092
 
 
63b02f7
0a69092
 
 
 
63b02f7
 
 
 
 
 
0a69092
 
 
 
 
 
 
 
 
 
63b02f7
0a69092
 
 
63b02f7
 
0a69092
 
 
 
 
 
 
63b02f7
 
 
c9e151d
63b02f7
03cdb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a69092
63b02f7
c9e151d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import spaces
from PIL import Image
import requests
from transformers import AutoModelForCausalLM, AutoProcessor
import torch
import subprocess
from io import BytesIO
import os

# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Load the model and processor
model_id = "microsoft/Phi-3.5-vision-instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    trust_remote_code=True,
    torch_dtype=torch.float16,
    use_flash_attention_2=False,  # Explicitly disable Flash Attention 2
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)

@spaces.GPU(duration=120)  # Adjust the duration as needed
def solve_math_problem(image):
    # Move model to GPU for this function call
    model.to('cuda')
    
    # Prepare the input
    messages = [
        {"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."},
    ]
    prompt = processor.tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    
    # Process the input
    inputs = processor(prompt, image, return_tensors="pt").to("cuda")
    
    # Generate the response
    generation_args = {
        "max_new_tokens": 1000,
        "temperature": 0.2,
        "do_sample": True,
    }
    generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
    
    # Decode the response
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    
    # Move model back to CPU to free up GPU memory
    model.to('cpu')
    return response

def load_image_from_file(file_path):
    if os.path.exists(file_path):
        return Image.open(file_path)
    else:
        raise FileNotFoundError(f"Image file not found: {file_path}")
# Custom CSS
# Custom CSS
custom_css = """
<style>
    body {
        font-family: 'Arial', sans-serif;
        background-color: #f0f3f7;
        margin: 0;
        padding: 0;
    }
    .container {
        max-width: 1200px;
        margin: 0 auto;
        padding: 20px;
    }
    .header {
        background-color: #2c3e50;
        color: white;
        padding: 20px 0;
        text-align: center;
    }
    .header h1 {
        margin: 0;
        font-size: 2.5em;
    }
    .main-content {
        display: flex;
        justify-content: space-between;
        margin-top: 30px;
    }
    .input-section, .output-section {
        width: 48%;
        background-color: white;
        border-radius: 8px;
        padding: 20px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .gr-button {
        background-color: #27ae60;
        color: white;
        border: none;
        padding: 10px 20px;
        border-radius: 5px;
        cursor: pointer;
        transition: background-color 0.3s;
    }
    .gr-button:hover {
        background-color: #2ecc71;
    }
    .examples-section {
        margin-top: 30px;
        background-color: white;
        border-radius: 8px;
        padding: 20px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .examples-section h3 {
        margin-top: 0;
        color: #2c3e50;
    }
    .footer {
        text-align: center;
        margin-top: 30px;
        color: #7f8c8d;
    }
</style>
"""

# Custom HTML
custom_html = """
<div class="container">
    <div class="header">
        <h1>AI Math Equation Solver</h1>
        <p>Upload an image of a math problem, and our AI will solve it step by step!</p>
    </div>
    <div class="main-content">
        <div class="input-section">
            <h2>Upload Your Math Problem</h2>
            {input_image}
            {submit_btn}
        </div>
        <div class="output-section">
            <h2>Solution</h2>
            {output_text}
        </div>
    </div>
    <div class="examples-section">
        <h3>Try These Examples</h3>
        {examples}
    </div>
    <div class="footer">
        <p>Powered by Gradio and AI - Created for educational purposes</p>
    </div>
</div>
"""

# Create the Gradio interface
with gr.Blocks(css=custom_css) as iface:
    gr.HTML("""
        <div class="header">
            <h1>AI Math Equation Solver</h1>
            <p>Upload an image of a math problem, and our AI will solve it step by step!</p>
        </div>
    """)
    
    with gr.Row(equal_height=True):
        with gr.Column():
            gr.HTML("<h2>Upload Your Math Problem</h2>")
            input_image = gr.Image(type="pil", label="Upload Math Problem Image")
            submit_btn = gr.Button("Solve Problem", elem_classes=["gr-button"])
        
        with gr.Column():
            gr.HTML("<h2>Solution</h2>")
            output_text = gr.Textbox(label="Step-by-step Solution", lines=10)
    
    gr.HTML("<h3>Try These Examples</h3>")
    examples = gr.Examples(
        examples=[
            os.path.join(os.path.dirname(__file__), "eqn1.png"),
            os.path.join(os.path.dirname(__file__), "eqn2.png")
        ],
        inputs=input_image,
        outputs=output_text,
        fn=solve_math_problem,
        cache_examples=True,
    )
    
    gr.HTML("""
        <div class="footer">
            <p>Powered by Gradio and AI - Created for educational purposes</p>
        </div>
    """)

    submit_btn.click(fn=solve_math_problem, inputs=input_image, outputs=output_text)

# Launch the app
iface.launch()