File size: 5,573 Bytes
c9e151d 11a9884 ae24526 380d0cf 63b02f7 11a9884 c9e151d 32f55fb c9e151d 5b2b4ac c9e151d 63b02f7 c9e151d 63b02f7 c9e151d 63b02f7 c9e151d 380d0cf 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 0a69092 63b02f7 c9e151d 63b02f7 03cdb75 0a69092 63b02f7 c9e151d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
import spaces
from PIL import Image
import requests
from transformers import AutoModelForCausalLM, AutoProcessor
import torch
import subprocess
from io import BytesIO
import os
# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Load the model and processor
model_id = "microsoft/Phi-3.5-vision-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16,
use_flash_attention_2=False, # Explicitly disable Flash Attention 2
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
@spaces.GPU(duration=120) # Adjust the duration as needed
def solve_math_problem(image):
# Move model to GPU for this function call
model.to('cuda')
# Prepare the input
messages = [
{"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."},
]
prompt = processor.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Process the input
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
# Generate the response
generation_args = {
"max_new_tokens": 1000,
"temperature": 0.2,
"do_sample": True,
}
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
# Decode the response
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# Move model back to CPU to free up GPU memory
model.to('cpu')
return response
def load_image_from_file(file_path):
if os.path.exists(file_path):
return Image.open(file_path)
else:
raise FileNotFoundError(f"Image file not found: {file_path}")
# Custom CSS
# Custom CSS
custom_css = """
<style>
body {
font-family: 'Arial', sans-serif;
background-color: #f0f3f7;
margin: 0;
padding: 0;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.header {
background-color: #2c3e50;
color: white;
padding: 20px 0;
text-align: center;
}
.header h1 {
margin: 0;
font-size: 2.5em;
}
.main-content {
display: flex;
justify-content: space-between;
margin-top: 30px;
}
.input-section, .output-section {
width: 48%;
background-color: white;
border-radius: 8px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gr-button {
background-color: #27ae60;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #2ecc71;
}
.examples-section {
margin-top: 30px;
background-color: white;
border-radius: 8px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.examples-section h3 {
margin-top: 0;
color: #2c3e50;
}
.footer {
text-align: center;
margin-top: 30px;
color: #7f8c8d;
}
</style>
"""
# Custom HTML
custom_html = """
<div class="container">
<div class="header">
<h1>AI Math Equation Solver</h1>
<p>Upload an image of a math problem, and our AI will solve it step by step!</p>
</div>
<div class="main-content">
<div class="input-section">
<h2>Upload Your Math Problem</h2>
{input_image}
{submit_btn}
</div>
<div class="output-section">
<h2>Solution</h2>
{output_text}
</div>
</div>
<div class="examples-section">
<h3>Try These Examples</h3>
{examples}
</div>
<div class="footer">
<p>Powered by Gradio and AI - Created for educational purposes</p>
</div>
</div>
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css) as iface:
gr.HTML("""
<div class="header">
<h1>AI Math Equation Solver</h1>
<p>Upload an image of a math problem, and our AI will solve it step by step!</p>
</div>
""")
with gr.Row(equal_height=True):
with gr.Column():
gr.HTML("<h2>Upload Your Math Problem</h2>")
input_image = gr.Image(type="pil", label="Upload Math Problem Image")
submit_btn = gr.Button("Solve Problem", elem_classes=["gr-button"])
with gr.Column():
gr.HTML("<h2>Solution</h2>")
output_text = gr.Textbox(label="Step-by-step Solution", lines=10)
gr.HTML("<h3>Try These Examples</h3>")
examples = gr.Examples(
examples=[
os.path.join(os.path.dirname(__file__), "eqn1.png"),
os.path.join(os.path.dirname(__file__), "eqn2.png")
],
inputs=input_image,
outputs=output_text,
fn=solve_math_problem,
cache_examples=True,
)
gr.HTML("""
<div class="footer">
<p>Powered by Gradio and AI - Created for educational purposes</p>
</div>
""")
submit_btn.click(fn=solve_math_problem, inputs=input_image, outputs=output_text)
# Launch the app
iface.launch() |