Update app.py
Browse files
app.py
CHANGED
@@ -1,197 +1,84 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
from PIL import Image
|
4 |
-
import requests
|
5 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
6 |
import torch
|
7 |
-
import
|
8 |
-
from io import BytesIO
|
9 |
-
import os
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
|
14 |
-
# Load
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
@spaces.GPU(duration=120) # Adjust the duration as needed
|
25 |
-
def solve_math_problem(image):
|
26 |
-
# Move model to GPU for this function call
|
27 |
-
model.to('cuda')
|
28 |
-
|
29 |
-
# Prepare the input
|
30 |
-
messages = [
|
31 |
-
{"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."},
|
32 |
-
]
|
33 |
-
prompt = processor.tokenizer.apply_chat_template(
|
34 |
-
messages, tokenize=False, add_generation_prompt=True
|
35 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
"do_sample": True,
|
45 |
-
}
|
46 |
-
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
|
47 |
-
|
48 |
-
# Decode the response
|
49 |
-
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
50 |
-
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
return response
|
55 |
|
56 |
-
def
|
57 |
-
if
|
58 |
-
|
59 |
else:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
<style>
|
65 |
-
body {
|
66 |
-
font-family: 'Arial', sans-serif;
|
67 |
-
background-color: #f0f3f7;
|
68 |
-
margin: 0;
|
69 |
-
padding: 0;
|
70 |
-
}
|
71 |
-
.container {
|
72 |
-
max-width: 1200px;
|
73 |
-
margin: 0 auto;
|
74 |
-
padding: 20px;
|
75 |
-
}
|
76 |
-
.header {
|
77 |
-
background-color: #2c3e50;
|
78 |
-
color: white;
|
79 |
-
padding: 20px 0;
|
80 |
-
text-align: center;
|
81 |
-
}
|
82 |
-
.header h1 {
|
83 |
-
margin: 0;
|
84 |
-
font-size: 2.5em;
|
85 |
-
}
|
86 |
-
.main-content {
|
87 |
-
display: flex;
|
88 |
-
justify-content: space-between;
|
89 |
-
margin-top: 30px;
|
90 |
-
}
|
91 |
-
.input-section, .output-section {
|
92 |
-
width: 48%;
|
93 |
-
background-color: white;
|
94 |
-
border-radius: 8px;
|
95 |
-
padding: 20px;
|
96 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
97 |
-
}
|
98 |
-
.gr-button {
|
99 |
-
background-color: #27ae60;
|
100 |
-
color: white;
|
101 |
-
border: none;
|
102 |
-
padding: 10px 20px;
|
103 |
-
border-radius: 5px;
|
104 |
-
cursor: pointer;
|
105 |
-
transition: background-color 0.3s;
|
106 |
-
}
|
107 |
-
.gr-button:hover {
|
108 |
-
background-color: #2ecc71;
|
109 |
-
}
|
110 |
-
.examples-section {
|
111 |
-
margin-top: 30px;
|
112 |
-
background-color: white;
|
113 |
-
border-radius: 8px;
|
114 |
-
padding: 20px;
|
115 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
116 |
-
}
|
117 |
-
.examples-section h3 {
|
118 |
-
margin-top: 0;
|
119 |
-
color: #2c3e50;
|
120 |
-
}
|
121 |
-
.footer {
|
122 |
-
text-align: center;
|
123 |
-
margin-top: 30px;
|
124 |
-
color: #7f8c8d;
|
125 |
-
}
|
126 |
-
</style>
|
127 |
-
"""
|
128 |
-
|
129 |
-
# Custom HTML
|
130 |
-
custom_html = """
|
131 |
-
<div class="container">
|
132 |
-
<div class="header">
|
133 |
-
<h1>AI Math Equation Solver</h1>
|
134 |
-
<p>Upload an image of a math problem, and our AI will solve it step by step!</p>
|
135 |
-
</div>
|
136 |
-
<div class="main-content">
|
137 |
-
<div class="input-section">
|
138 |
-
<h2>Upload Your Math Problem</h2>
|
139 |
-
{input_image}
|
140 |
-
{submit_btn}
|
141 |
-
</div>
|
142 |
-
<div class="output-section">
|
143 |
-
<h2>Solution</h2>
|
144 |
-
{output_text}
|
145 |
-
</div>
|
146 |
-
</div>
|
147 |
-
<div class="examples-section">
|
148 |
-
<h3>Try These Examples</h3>
|
149 |
-
{examples}
|
150 |
-
</div>
|
151 |
-
<div class="footer">
|
152 |
-
<p>Powered by Gradio and AI - Created for educational purposes</p>
|
153 |
-
</div>
|
154 |
-
</div>
|
155 |
-
"""
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
gr.HTML("""
|
160 |
-
<div class="header">
|
161 |
-
<h1>AI Math Equation Solver</h1>
|
162 |
-
<p>Upload an image of a math problem, and our AI will solve it step by step!</p>
|
163 |
-
</div>
|
164 |
-
""")
|
165 |
|
166 |
-
with gr.Row(
|
167 |
-
|
168 |
-
|
169 |
-
input_image = gr.Image(type="pil", label="Upload Math Problem Image")
|
170 |
-
submit_btn = gr.Button("Solve Problem", elem_classes=["gr-button"])
|
171 |
-
|
172 |
-
with gr.Column():
|
173 |
-
gr.HTML("<h2>Solution</h2>")
|
174 |
-
output_text = gr.Textbox(label="Step-by-step Solution", lines=10)
|
175 |
|
176 |
-
gr.
|
177 |
-
|
178 |
-
examples=[
|
179 |
-
os.path.join(os.path.dirname(__file__), "eqn1.png"),
|
180 |
-
os.path.join(os.path.dirname(__file__), "eqn2.png")
|
181 |
-
],
|
182 |
-
inputs=input_image,
|
183 |
-
outputs=output_text,
|
184 |
-
fn=solve_math_problem,
|
185 |
-
cache_examples=True,
|
186 |
-
)
|
187 |
|
188 |
-
gr.
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
|
196 |
-
|
197 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, pipeline
|
3 |
from PIL import Image
|
|
|
|
|
4 |
import torch
|
5 |
+
import warnings
|
|
|
|
|
6 |
|
7 |
+
# Suppress warnings
|
8 |
+
warnings.filterwarnings("ignore")
|
9 |
|
10 |
+
# Load Phi-3.5-vision model
|
11 |
+
phi_model_id = "microsoft/Phi-3.5-vision-instruct"
|
12 |
+
try:
|
13 |
+
phi_model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
phi_model_id,
|
15 |
+
device_map="auto",
|
16 |
+
trust_remote_code=True,
|
17 |
+
torch_dtype=torch.float16, # Use float16 to reduce memory usage
|
18 |
+
_attn_implementation="eager" # Fall back to eager implementation if flash attention is not available
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
+
except ImportError:
|
21 |
+
print("FlashAttention not available, falling back to eager implementation.")
|
22 |
+
phi_model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
phi_model_id,
|
24 |
+
device_map="auto",
|
25 |
+
trust_remote_code=True,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
_attn_implementation="eager"
|
28 |
+
)
|
29 |
+
|
30 |
+
phi_processor = AutoProcessor.from_pretrained(phi_model_id, trust_remote_code=True)
|
31 |
+
|
32 |
+
# Load Llama 3.1 model
|
33 |
+
llama_model_id = "meta-llama/Llama-3.1-8B"
|
34 |
+
try:
|
35 |
+
llama_pipeline = pipeline("text-generation", model=llama_model_id, device_map="auto", torch_dtype=torch.float16)
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error loading Llama 3.1 model: {e}")
|
38 |
+
print("Falling back to a smaller, open-source model.")
|
39 |
+
llama_model_id = "gpt2" # Fallback to a smaller, open-source model
|
40 |
+
llama_pipeline = pipeline("text-generation", model=llama_model_id, device_map="auto")
|
41 |
+
|
42 |
+
def analyze_image(image, query):
|
43 |
+
prompt = f"<|user|>\n<|image_1|>\n{query}<|end|>\n<|assistant|>\n"
|
44 |
+
inputs = phi_processor(prompt, images=image, return_tensors="pt").to(phi_model.device)
|
45 |
|
46 |
+
with torch.no_grad():
|
47 |
+
output = phi_model.generate(**inputs, max_new_tokens=100)
|
48 |
+
return phi_processor.decode(output[0], skip_special_tokens=True)
|
49 |
+
|
50 |
+
def generate_text(query, history):
|
51 |
+
context = "\n".join([f"{h[0]}\n{h[1]}" for h in history])
|
52 |
+
prompt = f"{context}\nHuman: {query}\nAI:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
response = llama_pipeline(prompt, max_new_tokens=100, do_sample=True, temperature=0.7)[0]['generated_text']
|
55 |
+
return response.split("AI:")[-1].strip()
|
|
|
56 |
|
57 |
+
def chatbot(image, query, history):
|
58 |
+
if image is not None:
|
59 |
+
response = analyze_image(Image.fromarray(image), query)
|
60 |
else:
|
61 |
+
response = generate_text(query, history)
|
62 |
+
|
63 |
+
history.append((query, response))
|
64 |
+
return "", history, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown("# Multi-Modal AI Assistant")
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
with gr.Row():
|
70 |
+
image_input = gr.Image(type="numpy", label="Upload an image (optional)")
|
71 |
+
chat_history = gr.Chatbot(label="Chat History")
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
query_input = gr.Textbox(label="Ask a question or enter a prompt")
|
74 |
+
submit_button = gr.Button("Submit")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
state = gr.State([])
|
77 |
+
|
78 |
+
submit_button.click(
|
79 |
+
chatbot,
|
80 |
+
inputs=[image_input, query_input, state],
|
81 |
+
outputs=[query_input, chat_history, state]
|
82 |
+
)
|
83 |
|
84 |
+
demo.launch()
|
|